
Lesson 2: Simulation of stochastic dynamic models

Qianying (Ruby) Lin Spencer J. Fox Zian (Larry) Zhuang

1 / 56



Objectives
This tutorial develops some classes of dynamic models relevant to biological systems,
especially for epidemiology.

1. Dynamic systems can often be represented in terms of flows between
compartments.

2. We develop the concept of a compartment model for which we specify rates for
the flows between compartments.

3. We show how deterministic and stochastic versions of a compartment model are
derived and related.

4. We introduce Euler’s method to simulate from dynamic models.
5. We specify deterministic and stochastic compartment models in pomp using Euler

method simulation.
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A basic compartment model: The SIR model I
▶ We develop deterministic and stochastic representations of a

susceptible-infected-recovered (SIR) system, a fundamental class of models for
disease transmission dynamics.

▶ We set up notation applicable to general compartment models (Bretó et al. 2009).
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S : susceptible I : infected and infectious
R : recovered and/or removed C : reported cases
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A basic compartment model: The SIR model II
▶ We suppose that each arrow has an associated rate, so here there is a rate 𝜇𝑆𝐼(𝑡)

at which individuals in 𝑆 transition to 𝐼 , and 𝜇𝐼𝑅 at which individuals in 𝐼
transition to 𝑅.

▶ To account for demography (births/deaths/migration) we allow the possibility of a
source and sink compartment, which is not usually represented on the flow
diagram. We write 𝜇𝐵𝑆 for a rate of births into 𝑆, and denote mortality rates by
𝜇𝑆𝐷, 𝜇𝐼𝐷, 𝜇𝑅𝐷.

▶ The rates may be either constant or time-varying.
▶ For the simplest SIR model, ignoring demography, we set

𝜇𝐵𝑆 = 𝜇𝑆𝐷 = 𝜇𝐼𝐷 = 𝜇𝑅𝐷 = 0.
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General notation for compartment models I
To develop a systematic notation, it turns out to be convenient to keep track of the
flows between compartments as well as the number of individuals in each compartment:

▶ 𝑁𝑆𝐼(𝑡): the number of individuals who have transitioned from 𝑆 to 𝐼 by time 𝑡.
We say that 𝑁𝑆𝐼(𝑡) is a counting process.

▶ 𝑁𝐼𝑅(𝑡): the number of individuals transitioning from 𝐼 to 𝑅 by time 𝑡.
To include demography, we could keep track of birth and death events by the counting
processes:

▶ 𝑁𝐵𝑆(𝑡): the number of newborns into 𝑆 by time 𝑡.
▶ 𝑁𝑆𝐷(𝑡), 𝑁𝐼𝐷(𝑡), 𝑁𝑅𝐷(𝑡): the number of deaths from 𝑆, 𝐼 , and 𝑅

compartments by time 𝑡, respectively.
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General notation for compartment models II
▶ For discrete population compartment models, the flow counting processes are

non-decreasing and integer valued.
▶ For continuous population compartment models, the flow counting processes are

non-decreasing and real valued.
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Compartment model from counting processes
▶ The numbers of people in each compartment can be computed via these counting

processes. Ignoring demography, we have:

𝑆(𝑡) = 𝑆(0) − 𝑁𝑆𝐼(𝑡)
𝐼(𝑡) = 𝐼(0) + 𝑁𝑆𝐼(𝑡) −𝑁𝐼𝑅(𝑡)
𝑅(𝑡) = 𝑅(0) +𝑁𝐼𝑅(𝑡)

▶ These equations represent conservation of individuals or what goes in must come
out.
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Ordinary differential equation interpretation
Together with initial conditions specifying 𝑆(0), 𝐼(0) and 𝑅(0), we just need to write
down ordinary differential equations (ODEs) for the flow counting processes. These are:

d𝑁𝑆𝐼
d𝑡 = 𝜇𝑆𝐼(𝑡) 𝑆(𝑡)

d𝑁𝐼𝑅
d𝑡 = 𝜇𝐼𝑅 𝐼(𝑡)
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Common notation for a deterministic SIR model

▶ 𝛽: transmission rate, encompasses the frequency of contacts and transmission
probability between individuals

▶ 𝛾: recovery rate, rate that infected individuals become “uninfectious”
▶ Duration of infectiousness on average is 1

𝛾
▶ 𝑆 + 𝐼 + 𝑅 = 𝑁
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Common notation for a deterministic SIR model - equations

d𝑆
d𝑡 = −𝛽𝑆 𝐼

𝑁
d𝐼
d𝑡 = 𝛽𝑆 𝐼

𝑁 − 𝛾 ∗ 𝐼
d𝑅
d𝑡 = 𝛾𝐼
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Stochastic Differential Equations (SDEs)
▶ By including randomness in the ODE system, we can have the stochastic

differential equation (SDE) system.
▶ For example, for the ODE d𝑥

d𝑡 = ℎ(𝑥), a natural way to add stochastic variation is

d𝑋
d𝑡 = ℎ(𝑋) + 𝜎 d𝐵

d𝑡
where {𝐵(𝑡)} is Brownian motion and so 𝑑𝐵/𝑑𝑡 is Brownian noise.
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The simple counting process and the reactions I
▶ A deterministic SIR model has a fixed trajectory, indicating that the number of

each compartment at any time is fixed with given parameters and intial states;
thus the transitions between compartments are fixed at any time.

▶ A stochastic SIR model, in the contrary, the trajectory and the transitions between
compartments at any time are stochastic.

▶ Recall 𝑁𝑆𝐼(𝑡) and 𝑁𝐼𝑅(𝑡) are counting processes, indicating the number of total
individuals transitioned from 𝑆 to 𝐼 and 𝐼 to 𝑅 by time 𝑡, respectively.

▶ A simple counting process is one which cannot count more than one event at a
time.
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The simple counting process and the reactions II
▶ We then can relate the counting process to the common SIR reactions with the

corresponding probabilities.
▶ Note that we are using little o notation and we write ℎ(𝛿) = 𝑜(𝛿) to mean

lim𝛿→0
ℎ(𝛿)

𝛿 = 0.

Table 1: Relationship between the counting processes, the reactions, and the probabilities.

Counting Reaction Probability
𝑁𝑆𝐼(𝑡 + 𝛿) = 𝑁𝑆𝐼(𝑡) + 1 𝑆 → 𝑆 − 1

𝐼 → 𝐼 + 1
𝛽𝑆(𝑡)𝐼(𝑡)𝛿/𝑁 + 𝑜(𝛿)

𝑁𝑆𝐼(𝑡 + 𝛿) = 𝑁𝑆𝐼(𝑡) 1 − 𝛽𝑆(𝑡)𝐼(𝑡)𝛿/𝑁 + 𝑜(𝛿)
𝑁𝐼𝑅(𝑡 + 𝛿) = 𝑁𝐼𝑅(𝑡) + 1 𝐼 → 𝐼 − 1

𝑅 → 𝑅 + 1
𝛾𝐼(𝑡)𝛿 + 𝑜(𝛿)

𝑁𝐼𝑅(𝑡 + 𝛿) = 𝑁𝐼𝑅(𝑡) 1 − 𝛾𝐼(𝑡)𝛿 + 𝑜(𝛿)
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The Euler’s method I
▶ When referring the counting and its corresponding probability in Table 1, it is

obvious that we can derive a continuous time Markov chain (CTMC) for the SIR
model:

ℙ[𝑁𝑆𝐼(𝑡 + 𝛿) = 𝑁𝑆𝐼(𝑡) + 1] = 𝛽 𝑆(𝑡) 𝐼(𝑡)/𝑁 𝛿 + 𝑜(𝛿),
ℙ[𝑁𝐼𝑅(𝑡 + 𝛿) = 𝑁𝐼𝑅(𝑡) + 1] = 𝛾 𝐼(𝑡)𝛿 + 𝑜(𝛿).

▶ For 𝑘 = 1, 2, ..., by discretizing this CTMC with small time step 𝛿, we can derive
a numerical solution with the state variables ̃𝑆(𝑘𝛿), ̃𝐼(𝑘𝛿), �̃�(𝑘𝛿):

̃𝑆(𝑘𝛿) = 𝑆(0) − ̃𝑁𝑆𝐼(𝑘𝛿)
̃𝐼(𝑘𝛿) = 𝐼(0) + ̃𝑁𝑆𝐼(𝑘𝛿) − ̃𝑁𝐼𝑅(𝑘𝛿)

�̃�(𝑘𝛿) = 𝑅(0) + ̃𝑁𝐼𝑅(𝑘𝛿)
▶ ̃𝑁𝑆𝐼(𝑡) and ̃𝑁𝐼𝑅(𝑡): the numerical solutions for 𝑁𝑆𝐼(𝑡) and 𝑁𝐼𝑅(𝑡)
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The Euler’s method II
▶ Let current 𝑡 = 𝑘𝛿, consider the small time interval 𝑡 ≤ 𝜏 ≤ 𝑡 + 𝛿.
▶ Assume that the gradients d𝑁𝑆𝐼

d𝑡 = 𝜇𝑆𝐼(𝑡) 𝑆(𝑡) and d𝑁𝐼𝑅
d𝑡 = 𝜇𝐼𝑅 𝐼(𝑡) are

approximately constant
▶ We can have ̃𝑁𝑆𝐼(𝑡 + 𝛿) and ̃𝑁𝐼𝑅(𝑡 + 𝛿) as:

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + 𝛿 𝛽 𝑆(𝑡) 𝐼(𝑡) /𝑁
̃𝑁𝐼𝑅(𝑡 + 𝛿) = ̃𝑁𝐼𝑅(𝑡) + 𝛿 𝛾 𝐼(𝑡)
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The Euler’s method III
Now we can include stochastic variation in the Euler’s method.

▶ Recall the SDE:

d𝑋
d𝑡 = ℎ(𝑋) + 𝜎 d𝐵

d𝑡
where {𝐵(𝑡)} is Brownian motion and so 𝑑𝐵/𝑑𝑡 is Brownian noise.

▶ An Euler approximation �̃�(𝑡) within the small time interval [𝑡, 𝑡 + 𝛿] and 𝑡 = 𝑘𝛿
for 𝑘 = 0, 1, 2, … is

�̃�( 𝑡 + 𝛿 ) = �̃�(𝑡) + 𝛿 ℎ( �̃�(𝑡) ) + 𝜎
√

𝛿 𝑍𝑘

where 𝑍1, 𝑍2, … are independent standard normal random variables, i.e.,
𝑍𝑘 ∼ Normal (0, 1).

▶ Although SDEs are often considered an advanced topic in probability, the Euler
approximation doesn’t demand much more than familiarity with the normal
distribution.
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The Euler’s method IV
Now we can consider applying the Euler’s method for a stochastic SIR model:

▶ A binomial approximation with exponential transition probabilities.

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + Binomial[ ̃𝑆(𝑡), 1 − exp { − 𝛽 ̃𝐼(𝑡)/𝑁 𝛿}],
̃𝑁𝐼𝑅(𝑡 + 𝛿) = ̃𝑁𝐼𝑅(𝑡) + Binomial[ ̃𝐼(𝑡), 1 − exp { − 𝛿 𝛾}],

where Binomial(𝑛, 𝑝) is a binomial random variable with mean 𝑛𝑝 and variance
𝑛𝑝(1 − 𝑝). Here, 𝑝 = 1 − exp { − 𝛽 ̃𝐼(𝑡)/𝑁 𝛿} and 𝑝 = 1 − exp { − 𝛿 𝛾}, respectively.
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The Euler’s method V
The following are two other ways for a stochastic SIR model with the Euler’s
approximation, what they are not as good as the previous one?

1. A Poisson approximation.

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + Poisson[𝛽 ̃𝑆(𝑡) ̃𝐼(𝑡)/𝑁 𝛿],

where Poisson(𝜇) is a Poisson random variable with mean 𝜇 = 𝛽 ̃𝑆(𝑡) ̃𝐼(𝑡)/𝑁 𝛿.
2. A binomial approximation,

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + Binomial[ ̃𝑆(𝑡), 𝛽 ̃𝐼(𝑡)/𝑁 𝛿].

18 / 56



The Gillespie method I
▶ Numerical methods, such as the Euler’s method, are approximations to the

process by discretizing time using small time step 𝛿
▶ However, the Gillespie method is the exact Stochastic Simulation Method,

which leverages the Markov Property as well.
▶ In Table 1, by consider the reactions and the probabilities, we can derive the

Gillespie algorithm for the stochastic SIR model.
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The Gillespie method II
With initialization, 𝑆(0), 𝐼(0), and 𝑅(0), at current time 𝑡:

1. Compute the total event rates: 𝜆1 = 𝛽 𝑆(𝑡) 𝐼(𝑡)/𝑁, 𝜆2 = 𝛾 𝐼(𝑡), 𝜆 = 𝜆1 + 𝜆2
2. Compute the waiting time Δ𝑡 ∼ Exponential(𝜆)
3. Select the reactions by sampling from probabilities (𝜆1

𝜆 , 𝜆2
𝜆 )

4. Update the states from the selected reaction and update the time 𝑡 → 𝑡 + Δ𝑡
5. Repeat 1-4 till the end of the simulation time

Even though the Gillespie is an exact stochastic simulation method, it has limitations
such as:

▶ Computational Intensity: For complex systems with many reactions, the Gillespie
method can become computationally expensive.

▶ Rare Events: For systems where some reactions are very rare, a large number of
simulation steps may be needed to capture these events, making the method slow.
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Euler vs. Gillespie
▶ Why and When would you prefer an implementation of Gillespie’s algorithm to an

Euler solution?

Worked solution to the Exercise

▶ Numerically, Gillespie’s algorithm is often approximated using so-called tau-leaping
methods. These are closely related to Euler’s approach. In this context, the Euler
method has sometimes been called tau-leaping.
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Compartment models in pomp: The Consett Measles outbreaks I
Let’s look at outbreak of measles in the town of Consett in England in 1948:

▶ the town had population of 38820,
▶ with 737 births over the course of the year.

library(tidyverse)
read_csv("Measles_Consett_1948.csv") |>
select(week,reports=cases) -> meas

meas |> as.data.frame() |> head(n=3)
week reports

1 0
2 0
3 2

▶ week: time, indicates that the data are counted weekly
▶ reports variable: incidence, counts the number of

reports of new measles cases each week
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Compartment models in pomp: The Consett Measles outbreaks II
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The SIR as a POMP model for measles I
▶ The unobserved states: 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), the numbers

of individuals in the S, I, and R compartments,
respectively.

▶ The constant population size: 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),
as fixed at the known population size of 38,000.

▶ Flows move from one compartment to another over any
particular time interval are modeled as stochastic
processes.

▶ Demographic stochasticity: each individual in a
compartment at any given time faces the same risk of
exiting the compartment; the unavoidable randomness
that arises from chance events occurring in a discrete
and finite population.
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The SIR as a POMP model for measles II
Recall the application of the Euler’s method to a stochastic SIR model.

▶ Δ𝑁𝑆𝐼 and Δ𝑁𝐼𝑅: the flows from S to I and from I to R over interval Δ𝑡,
respectively:

Δ𝑁𝑆𝐼 ∼ Binomial (𝑆, 1 − 𝑒−𝛽 𝐼
𝑁 Δ𝑡) ,

Δ𝑁𝐼𝑅 ∼ Binomial (𝐼, 1 − 𝑒−𝛾Δ𝑡) .
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The SIR as a POMP model for measles III
▶ Implement the dynamics in pomp as an R function:

sir_stoch <- function (S, I, R, N, Beta, Gamma, delta.t, ...) {
dN_SI <- rbinom(n=1,size=S,prob=1-exp(-Beta*I/N*delta.t))
dN_IR <- rbinom(n=1,size=I,prob=1-exp(-Gamma*delta.t))
S <- S - dN_SI
I <- I + dN_SI - dN_IR
R <- R + dN_IR
c(S = S, I = I, R = R)

}
▶ Note that, for a deterministic SIR model:

dN_SI <- Beta*S*I/N*delta.t
dN_IR <- Gamma*I*delta.t
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The SIR as a POMP model for measles IV
We can implement the initialization function with the following assumptions:

▶ Assume the dynamics starts at week 0, 𝑡0 = 0.
▶ At 𝑡0, assume the initial number of infection is 1, that is 𝐼 = 1.
▶ The initial number of susceptible is unknown, so we’ll treat this fraction, 𝜂, as a

parameter to be estimated.
sir_rinit <- function (N, Eta, ...) {
c(S = round(N*Eta), I = 1, R = round(N*(1-Eta)))

}
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The SIR as a POMP model for measles V
With the initialization function sir_rinit and the process function sir_stoch, we
can build a pomp object with these two components and the data:
library(pomp)
meas |>
pomp(

times="week",t0=0,
rprocess=euler(sir_stoch,delta.t=1/7),
rinit=sir_rinit

) -> measSIR
▶ Question: what do times="week" and delta.t=1/7 indicate?
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The SIR as a POMP model for measles VI
▶ Assume the observations, the reports, result from a process by which new

infections are diagnosed in a hospital and reported with probability 𝜌.
▶ The diagnosed infections are immediately hospitalized, therefore, they have,

presumably, a much lower transmission rate; let’s assume each week’s reports as
being related to the number of individuals who have moved from I to R over the
course of that week.

▶ We then define a new variable, 𝐻, that tracks these daily counts.
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The SIR as a POMP model for measles VII
We now can modify the R functions to incorporate the new variable 𝐻:
sir_stoch <- function (S, I, R, N, Beta, Gamma, delta.t, H, ...) {
dN_SI <- rbinom(n=1,size=S,prob=1-exp(-Beta*I/N*delta.t))
dN_IR <- rbinom(n=1,size=I,prob=1-exp(-Gamma*delta.t))
S <- S - dN_SI
I <- I + dN_SI - dN_IR
R <- R + dN_IR
H <- H + dN_IR
c(S = S, I = I, R = R, H = H)

}

sir_rinit <- function (N, Eta, ...) {
c(S = round(N*Eta), I = 1, R = round(N*(1-Eta)), H = 0)

}
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The SIR as a POMP model for measles VIII
Note that, we are so far accounting for the flows between compartments by days, while
the reports are weekly cases. Since we want 𝐻 to tally only the incidence over the
week, we’ll need to reset it to zero at the beginning of each week. Thus, in pomp
terminology, 𝐻 is an accumulator variable. We accomplish this using the accumvars
argument to pomp when build the object:
measSIR |>
pomp(

rprocess=euler(sir_stoch,delta.t=1/7),
rinit=sir_rinit,
accumvars="H"

) -> measSIR
▶ Question: what does that mean by running a pomp function with the pomp object

measSIR?
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The SIR as a POMP model for measles IX
Last but not least, we need to define a measurement model to relate the
observations, reports, to the unobserved accumulative state, 𝐻.

▶ We will model the data by a negative binomial variable,

reports𝑡 ∼ NegBin (𝜌 𝐻(𝑡), 𝑘) .

with mean 𝜌 𝐻(𝑡) and variance 𝜌𝐻(𝑡) + (𝜌𝐻(𝑡))2/𝑘. The binomial distribution
does not have a separate variance parameter.
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The SIR as a POMP model for measles X
▶ To include the observations in the model, we must write either a dmeasure or an

rmeasure component, or both:
sir_dmeas <- function (reports, H, Rho, k, log, ...) {
dnbinom(x=reports, size=k, mu=Rho*H, log=log)

}

sir_rmeas <- function (H, Rho, k, ...) {
c(reports=rnbinom(n=1, size=k, mu=Rho*H))

}
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The SIR as a POMP model for measles XI
Eventually, we can add these two components to the previous measSIR object to
update the dmeasure and rmeasure arguments:
measSIR |>
pomp(

rmeasure=sir_rmeas,
dmeasure=sir_dmeas

) -> measSIR
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Specifying model components using C snippets I
▶ Although we can always specify basic model components using R functions, as

above, we‘ll typically want the computational speed-up that we can obtain only by
using compiled native code.

▶ pomp provides a facility for doing so with ease, using C snippets.
▶ C snippets are small pieces of C code used to specify basic model components.
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Specifying model components using C snippets II
▶ For example, a C snippet encoding the rprocess for an sir model is as follows.

sir_stoch <- Csnippet("
double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));
double dN_IR = rbinom(I,1-exp(-Gamma*dt));
S -= dN_SI;
I += dN_SI - dN_IR;
R += dN_IR;
H += dN_IR;

")
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Specifying model components using C snippets III
Note:

▶ It is necessary to define the data type for the real values dN_SI and dN_IR as
double. The data type for states does not need to be defined at this stage and
will be addressed later.

▶ rbinom is a built-in function used to generate random values from a binomial
distribution. For additional built-in distributions in R, you can refer to this
Rmath.h document.

▶ Remember to add a semicolon (;) after each line to ensure proper syntax.
▶ C snippets for the initializer and measurement model are:
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Specifying model components using C snippets IV
sir_rinit <- Csnippet("
S = nearbyint(Eta*N);
I = 1;
R = nearbyint((1-Eta)*N);
H = 0;

")

sir_dmeas <- Csnippet("
lik = dnbinom_mu(reports,k,Rho*H,give_log);

")

sir_rmeas <- Csnippet("
reports = rnbinom_mu(k,Rho*H);

")
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Specifying model components using C snippets V
▶ No need to define the type for likelihood (lik) here, as it is already predefined.
▶ nearbyint is a built-in function used to find the closest integer to a given value.
▶ reports is the variable name specified in your dataset.
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Specifying model components using C snippets VI
▶ A call to pomp replaces the basic model components with these, much faster,

implementations:
measSIR |>
pomp(

rprocess=euler(sir_stoch,delta.t=1/7),
rinit=sir_rinit,
rmeasure=sir_rmeas,
dmeasure=sir_dmeas,
accumvars="H",
statenames=c("S","I","R","H"),
paramnames=c("Beta","Gamma","N","Eta","Rho","k")

) -> measSIR_C
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Specifying model components using C snippets VII
▶ Note that, when using C snippets, one

has to tell pomp which of the variables
referenced in the C snippets are state
variables and which are parameters.
This is accomplished using the
statenames and paramnames
arguments.

▶ We can tell from the summary table
that CSnippet is approximate 50 times
faster than R.
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Guessing plausible parameter values I
▶ To check the code is working properly, we simulate. This requires us to assign

parameters. A little thought will get us some ballpark estimates.
▶ Recall that ℜ0 is the expected number of secondary infections resulting from one

primary infection introduced into a fully susceptible population. For an SIR
infection, one has that ℜ0 ≈ 𝐿

𝐴 , where 𝐿 is the lifespan of a host and 𝐴 is the
mean age of infection. Analysis of age-stratified serology data establish that the
mean age of infection for measles during this period was around 4–5yr (Anderson
and May 1991). Assuming a lifespan of 60–70yr, we have ℜ0 ≈ 15.

▶ The basic theory of SIR epidemics gives the final-size equation,

ℜ0 = − log (1 − 𝑓)
𝑓 ,

where 𝑓 is the final size of the epidemic—the fraction of those susceptible at the
beginning of the outbreak who ultimately become infected. For ℜ0 > 5, this
equation predicts that 𝑓 > 0.99.
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Guessing plausible parameter values II
▶ In the data, it looks like there were a total of 521 infections. Assuming 50%

reporting, we have that 𝑆0 ≈ 1042, so that 𝜂 = 𝑆0
𝑁 ≈ 0.027.

▶ If the infectious period is roughly 2 weeks, then 1/𝜇𝐼𝑅 ≈ 2 wk and
𝛽 = 𝜇𝐼𝑅 ℜ0 ≈ 7.5 wk−1.
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Guessing plausible parameter values III
measSIR |>
simulate(params=c(Beta=7.5,Gamma=0.5,Rho=0.5,k=10, Eta=0.03,N=38000),

nsim=20,format="data.frame",include.data=TRUE) |>
ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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Exercise I: Explore the SIR model
Fiddle with the parameters to see if you can’t find a model for which the data are a
more plausible realization.
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Worked solutions I: Explore the SIR model I
In the simulated outbreaks, the overall incidence is much too low, and the outbreak
dies out immediately. We might try increasing the force of infection:
measSIR |>
simulate(params=c(Beta=25,Gamma=0.5,Rho=0.5,k=10,Eta=0.03,N=38000),

nsim=20,format="data.frame",include.data=TRUE) |>
ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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Worked solutions I: Explore the SIR model II
Taking it farther…
measSIR |>
simulate(params=c(Beta=40,Gamma=0.5,Rho=0.5,k=10,Eta=0.03,N=38000),

nsim=20,format="data.frame",include.data=TRUE) |>
ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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Worked solutions I: Explore the SIR model III
While this increases the overall incidence, the epidemic is now peaking too quickly. To
counteract this, we might try reducing the recovery rate.
measSIR |>
simulate(params=c(Beta=40,Gamma=0.2,Rho=0.5,k=10,Eta=0.03,N=38000),

nsim=20,format="data.frame",include.data=TRUE) |>
ggplot(aes(x=week,y=reports,group=.id,color=.id=="data"))+
geom_line() + guides(color="none")
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Worked solutions I: Explore the SIR model IV
Additionally, we might have a look at the effects of changing the initial susceptible
fraction, 𝜂:
measSIR |>
simulate(params=c(Beta=15,Gamma=0.5,Rho=0.5,k=10,Eta=0.06,N=38000),

nsim=20,format="data.frame",include.data=TRUE) |>
ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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Exercise II: Extend the SIR model to SEIR model
Below is a diagram of the so-called SEIR model. This differs from the SIR model in
that infected individuals must pass a period of latency before becoming infectious.

Modify the codes above to construct a pomp object containing the Consett measles
data and an SEIR model. Perform simulations as above and adjust parameters to get a
sense of whether improvement is possible by including a latent period.
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Worked solutions II: The SEIR model I
The existing code may be modified as follows:
seir_stoch <- Csnippet("
double dN_SE = rbinom(S,1-exp(-Beta*I/N*dt));
double dN_EI = rbinom(E,1-exp(-Sigma*dt));
double dN_IR = rbinom(I,1-exp(-Gamma*dt));
S -= dN_SE;
E += dN_SE - dN_EI;
I += dN_EI - dN_IR;
R += dN_IR;
H += dN_IR;

")
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Worked solutions II: The SEIR model II
seir_init <- Csnippet("
S = nearbyint(Eta*N);
E = 0; I = 1;
R = nearbyint((1-Eta)*N);
H = 0;

")

measSIR |>
pomp(

rprocess=euler(seir_stoch,delta.t=1/7),
rinit=seir_init,
paramnames=c("N","Beta","Sigma","Gamma","Rho","Eta","k"),
statenames=c("S","E","I","R","H")

) -> measSEIR
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Worked solutions II: The SEIR model III
Using the rough estimate that the latent period in measles is 8–10da, we take
𝜎 ∼ 0.8wk-1 and 𝛾 ∼ 1.3wk-1 (roughly the same generation time as before).
measSEIR |>
simulate(params=c(Beta=30,Sigma=0.8,Gamma=1.3,

Rho=0.5,k=10,Eta=0.06,N=38000),
nsim=20,format="data.frame",include.data=TRUE) |>

ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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Worked solutions II: The SEIR model IV
Again one can increase the force of infection:
measSEIR |>
simulate(params=c(Beta=40,Sigma=0.8,Gamma=1.3,

Rho=0.5,k=10,Eta=0.06,N=38000),
nsim=20,format="data.frame",include.data=TRUE) |>

ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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License, acknowledgments, and links
▶ This lesson is prepared for the Simulation-based Inference for Epidemiological

Dynamics module at the Summer Institute in Statistics and Modeling in Infectious
Diseases, SISMID.

▶ The materials build on previous versions of this course and related courses.
▶ Licensed under the Creative Commons Attribution-NonCommercial license. Please

share and remix non-commercially, mentioning its origin.
▶ Produced with R version 4.4.0 and pomp version 5.9.
▶ Compiled on 2024-07-24.
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