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Objectives
Students completing this lesson will:

1. Gain an understanding of the nature of the problem of likelihood computation for
POMP models.

2. Be able to explain the simplest particle filter algorithm.
3. Gain experience in the visualization and exploration of likelihood surfaces.
4. Be able to explain the tools of likelihood-based statistical inference that become

available given numerical accessibility of the likelihood function.
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Overview I
A general framework of epidemiological inference includes three layers:
▶ The input: a model of interest and the

given data
▶ A method for inference
▶ Inferences include estimation,

uncertainty, prediction and forecast,
and model selection.
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Overview II
Methods for inference can be categorized into three groups:

▶ Optimization-based: minimize a cost function (e.g., SSE, MSE, MAE) that
measures the difference between observed data and model predictions

▶ Likelihood-based: maximize a likelihood function, which represents the probability
of observing the given data given the parameters

▶ Summary Statistics-based: use a set of features of the data instead of the full set
of data

In this lesson, we focus on the likelihood-based method because
▶ it fits for stochastic models and
▶ it incorporates all data (i.e., full-information).
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The likelihood I
▶ The basis for modern frequentist, Bayesian, and information-theoretic inference.
▶ Method of maximum likelihood introduced by Fisher (1922).
▶ The likelihood function itself is a representation of the what the data have to say

about the parameters.
▶ A good general reference on likelihood is by Pawitan (2001).
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The likelihood II

▶ Goal: fit the model to the data and
conduct statistical inferences, such as
parameter estimation.

▶ The likelihood, thus, can be
considered as a metric to assess the
goodness of the proposed parameters.

▶ By exploring the space of parameters,
we can eventually obtain the
maximum likelihood estimator (MLE).

parameter
space likelihoods

likelihoodsparameter
space

filterreplenish

Thus, the objective of this lesson is to discuss how we compute the likelihood given a
model of interest with a proposed set of parameters in both theory and in pomp.
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Definition of the likelihood function
▶ Notations:

▶ 𝑦∗
1∶𝑁 : the data, a sequence of 𝑁 observations

▶ 𝑓𝑌1∶𝑁
(𝑦1∶𝑁 ; 𝜃): the statistical model, a probability distribution for each value of a

parameter vector 𝜃
▶ 𝑌1∶𝑁 ∼ 𝑓𝑌1∶𝑁

(𝑦1∶𝑁 ; 𝜃): a random variable drawn from distribution 𝑓𝑌1∶𝑁
(𝑦1∶𝑁 ; 𝜃)

▶ The likelihood function is

ℒ(𝜃) = 𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃),

the density function evaluated at the data.
▶ It is often convenient to work with the log-likelihood function,

ℓ(𝜃) = log ℒ(𝜃) = log 𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃).
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A simulator is implicitly a statistical model
▶ 𝑓𝑌1∶𝑁

(𝑦1∶𝑁 ; 𝜃) is simple and with an explicit expression:
▶ the simulation of 𝑌1∶𝑁 is direct, e.g., 𝑌𝑘 ∼ 𝑁(0, 1) for 𝑘 = 1, … , 𝑁
▶ the likelihood function is explicit

▶ 𝑓𝑌1∶𝑁
(𝑦1∶𝑁 ; 𝜃) is complex or even without an explicit expression:

▶ the simulation of 𝑌1∶𝑁 , given the underlying dynamical model, is a bit more complex
but convenient

▶ the likelihood function exists with a complicated expression or even without an
explicit expression

Thus, we can develop numerical methods to compute the complex or implicit likelihood
functions!
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The likelihood for a POMP model I
Recall the following schematic diagram, showing dependence among variables in a
POMP model.
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The likelihood for a POMP model II
Recall the following definitions and properties:

▶ Measurements: 𝑌𝑛, at time 𝑡𝑛 depend on the latent process, 𝑋𝑛, at that time.
▶ The Markov property: latent process variables depend on their value at the

previous timestep.
1. The distribution of the state 𝑋𝑛+1, conditional on 𝑋𝑛, is independent of the values

of 𝑋𝑘, 𝑘 < 𝑛 and 𝑌𝑘, 𝑘 ≤ 𝑛.
2. The distribution of the measurement 𝑌𝑛, conditional on 𝑋𝑛, is independent of all

other variables.
▶ The latent process: 𝑋(𝑡), may be defined at all times, but we are particularly

interested in its value at observation times. Therefore, we write

𝑋𝑛 = 𝑋(𝑡𝑛).

▶ We write collections of random variables using the notation 𝑋0∶𝑁 = (𝑋0, … , 𝑋𝑁).
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The likelihood for a POMP model III
▶ The one-step transition density: 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑥𝑛−1; 𝜃), together with the
measurement density, 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃) and the initial density, 𝑓𝑋0
(𝑥0; 𝜃), specify

the entire joint density via

𝑓𝑋0∶𝑁,𝑌1∶𝑁
(𝑥0∶𝑁 , 𝑦1∶𝑁 ; 𝜃)

= 𝑓𝑋0
(𝑥0; 𝜃)

𝑁
∏
𝑛=1

𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃) 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃).

▶ The marginal density for sequence of measurements: 𝑌1∶𝑁 , evaluated at the
data, 𝑦∗

1∶𝑁 , is

ℒ(𝜃) = 𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃) = ∫𝑓𝑋0∶𝑁,𝑌1∶𝑁
(𝑥0∶𝑁 , 𝑦∗

1∶𝑁 ; 𝜃) 𝑑𝑥0∶𝑁 .

11 / 59



Special case: deterministic latent process
▶ When the latent process is non-random, the log-likelihood for a POMP model

closely resembles a nonlinear regression model.
▶ In this case, we can write 𝑋𝑛 = 𝑥𝑛(𝜃), and the log-likelihood is

ℓ(𝜃) =
𝑁

∑
𝑛=1

log 𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑥𝑛(𝜃); 𝜃).

▶ If we have a Gaussian measurement model, where 𝑌𝑛 given 𝑋𝑛 = 𝑥𝑛(𝜃) is
conditionally normal with mean ̂𝑦𝑛(𝑥𝑛(𝜃)) and constant variance 𝜎2, then the
log-likelihood contains a sum of squares which is exactly the criterion that
nonlinear least squares regression seeks to minimize.

▶ More details on deterministic latent process models are given as a supplement.
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General case: stochastic unobserved state process
▶ For a POMP model, the likelihood takes the form of an integral:

ℒ(𝜃) = 𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃)

= ∫ 𝑓𝑋0
(𝑥0; 𝜃)

𝑁
∏
𝑛=1

𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑥𝑛; 𝜃) 𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃) 𝑑𝑥0∶𝑁 .

(1)

▶ This integral is high dimensional and, except for the simplest cases, can not be
reduced analytically.
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Monte Carlo likelihood: direct simulation I
Spoiler Alert: This section serves to introduce the concept of the particle filter and
the approach of Monte Carlo integration by first proposing an intuitive and a simpler
method. This simple method usually does NOT work on anything but very short
time series.

1. Let’s rewrite the likelihood integral using an equivalent factorization. As an
exercise, you could check how the equivalence of Equation 1 and Equation 2
follows algebraically from the Markov property and the definition of conditional
density.

ℒ(𝜃) = 𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃)

= ∫{
𝑁

∏
𝑛=1

𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑥𝑛; 𝜃)} 𝑓𝑋0∶𝑁
(𝑥0∶𝑁 ; 𝜃) 𝑑𝑥0∶𝑁 .

(2)
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Monte Carlo likelihood: direct simulation II
2. Notice, using the representation in Equation 2, that the likelihood can be written

as an expectation,

ℒ(𝜃) = 𝔼 [
𝑁

∏
𝑛=1

𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑋𝑛; 𝜃)] ,

where the expectation is taken with 𝑋0∶𝑁 ∼ 𝑓𝑋0∶𝑁
(𝑥0∶𝑁 ; 𝜃).

3. Now, using a law of large numbers, we can approximate an expectation by the
average of a Monte Carlo sample. Thus,

ℒ(𝜃) ≈ 1
𝐽

𝐽
∑
𝑗=1

𝑁
∏
𝑛=1

𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑋𝑗
𝑛; 𝜃),

where {𝑋𝑗
0∶𝑁 , 𝑗 = 1, … , 𝐽} is a Monte Carlo sample of size 𝐽 drawn from

𝑓𝑋0∶𝑁
(𝑥0∶𝑁 ; 𝜃).
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Monte Carlo likelihood: direct simulation III
In conclusion, we can generate trajectories by simulation and all we need to do to get a
Monte Carlo estimate of the likelihood is to evaluate the measurement density of the
data at each trajectory and average. In the context of the plug-and-play framework,
our algorithm depends on rprocess for simulation but does not require dprocess for
evaluation. However, this naive approach scales poorly with dimension:

▶ it requires a Monte Carlo effort that scales exponentially with the length of the
time series, and so is infeasible on anything but a short data set;

▶ due to stochasticity, once a simulated trajectory diverges from the data, it will
seldom come back;

▶ simulations that lose track and deviate from the data are harmful for likelihood
estimation;

▶ when simulating a long time series, almost all the simulated trajectories will
eventually lose track of the data.

▶ measles outbreak example: supplementary material.
16 / 59

directSimulation.html


Sequential Monte Carlo: The particle filter I
Fortunately, we can compute the likelihood for a POMP model by a much more
efficient algorithm than direct Monte Carlo integration:

1. We proceed by factorizing the likelihood in a different way:

ℒ(𝜃) = 𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃) =
𝑁

∏
𝑛=1

𝑓𝑌𝑛|𝑌1∶𝑛−1
(𝑦∗

𝑛|𝑦∗
1∶𝑛−1; 𝜃)

=
𝑁

∏
𝑛=1

∫ 𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑥𝑛; 𝜃) 𝑓𝑋𝑛|𝑌1∶𝑛−1
(𝑥𝑛|𝑦∗

1∶𝑛−1; 𝜃) 𝑑𝑥𝑛,

with the understanding that 𝑓𝑋1|𝑌1∶0
= 𝑓𝑋1

.
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Sequential Monte Carlo: The particle filter II
2. The Markov property leads to the prediction formula:

𝑓𝑋𝑛|𝑌1∶𝑛−1
(𝑥𝑛|𝑦∗

1∶𝑛−1; 𝜃)

= ∫𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃) 𝑓𝑋𝑛−1|𝑌1∶𝑛−1

(𝑥𝑛−1|𝑦∗
1∶𝑛−1; 𝜃) 𝑑𝑥𝑛−1.

3. Bayes’ theorem gives the filtering formula:

𝑓𝑋𝑛|𝑌1∶𝑛
(𝑥𝑛|𝑦∗

1∶𝑛; 𝜃)
= 𝑓𝑋𝑛|𝑌𝑛,𝑌1∶𝑛−1

(𝑥𝑛|𝑦∗
𝑛, 𝑦∗

1∶𝑛−1; 𝜃)

=
𝑓𝑌𝑛|𝑋𝑛

(𝑦∗
𝑛|𝑥𝑛; 𝜃) 𝑓𝑋𝑛|𝑌1∶𝑛−1

(𝑥𝑛|𝑦∗
1∶𝑛−1; 𝜃)

∫ 𝑓𝑌𝑛|𝑋𝑛
(𝑦∗𝑛|𝑢𝑛; 𝜃) 𝑓𝑋𝑛|𝑌1∶𝑛−1

(𝑢𝑛|𝑦∗
1∶𝑛−1; 𝜃) 𝑑𝑢𝑛

.
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Sequential Monte Carlo: The particle filter III
▶ This suggests that we keep track of two key distributions at each time 𝑡𝑛,

▶ The prediction distribution is 𝑓𝑋𝑛|𝑌1∶𝑛−1
(𝑥𝑛|𝑦∗

1∶𝑛−1).
▶ The filtering distribution is 𝑓𝑋𝑛|𝑌1∶𝑛

(𝑥𝑛|𝑦∗
1∶𝑛).

▶ The prediction and filtering formulas give us a two-step recursion:
▶ The prediction formula gives the prediction distribution at time 𝑡𝑛 using the filtering

distribution at time 𝑡𝑛−1.
▶ The filtering formula gives the filtering distribution at time 𝑡𝑛 using the prediction

distribution at time 𝑡𝑛.
▶ The particle filter use Monte Carlo techniques to sequentially estimate the

integrals in the prediction and filtering recursions. Hence, the alternative name of
sequential Monte Carlo (SMC).
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Sequential Monte Carlo: The particle filter IV
A basic particle filter is described as follows:

1. Suppose 𝑋𝐹
𝑛−1,𝑗, 𝑗 = 1, … , 𝐽 is a set of 𝐽 points drawn from the filtering

distribution at time 𝑡𝑛−1.
2. We obtain a sample 𝑋𝑃

𝑛,𝑗 of points drawn from the prediction distribution at time
𝑡𝑛 by simply simulating the process model:

𝑋𝑃
𝑛,𝑗 ∼ process(𝑋𝐹

𝑛−1,𝑗, 𝜃), 𝑗 = 1, … , 𝐽.

3. Having obtained 𝑥𝑃
𝑛,𝑗, we obtain a sample of points from the filtering distribution

at time 𝑡𝑛 by resampling from {𝑋𝑃
𝑛,𝑗, 𝑗 ∈ 1 ∶ 𝐽} with weights

𝑤𝑛,𝑗 = 𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑋𝑃
𝑛,𝑗; 𝜃).
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Sequential Monte Carlo: The particle filter V
4. The Monte Carlo principle tells us that the conditional likelihood

ℒ𝑛(𝜃) = 𝑓𝑌𝑛|𝑌1∶𝑛−1
(𝑦∗

𝑛|𝑦∗
1∶𝑛−1; 𝜃)

= ∫ 𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑥𝑛; 𝜃) 𝑓𝑋𝑛|𝑌1∶𝑛−1
(𝑥𝑛|𝑦∗

1∶𝑛−1; 𝜃) 𝑑𝑥𝑛

is approximated by

̂ℒ𝑛(𝜃) ≈ 1
𝐽 ∑

𝑗
𝑓𝑌𝑛|𝑋𝑛

(𝑦∗
𝑛|𝑋𝑃

𝑛,𝑗; 𝜃)

since 𝑋𝑃
𝑛,𝑗 is approximately a draw from 𝑓𝑋𝑛|𝑌1∶𝑛−1

(𝑥𝑛|𝑦∗
1∶𝑛−1; 𝜃).

5. We can iterate this procedure through the data, one step at a time, alternately
simulating and resampling, until we reach 𝑛 = 𝑁 .
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Sequential Monte Carlo: The particle filter VI
6. The full log-likelihood then has approximation

ℓ(𝜃) = log ℒ(𝜃) = ∑
𝑛

log ℒ𝑛(𝜃) ≈ ∑
𝑛

log ̂ℒ𝑛(𝜃).

▶ References on the particle filter include Kitagawa (1987), Arulampalam et al.
(2002), Doucet, Freitas, and Gordon (2001), King, Nguyen, and Ionides (2016).

▶ It can be shown that the particle filter provides an unbiased estimate of the
likelihood. This implies a consistent but biased estimate of the log-likelihood.
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A block diagram representation of a particle filter
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Parallel computing
It will be helpful to parallelize most of the computations. Most machines nowadays
have multiple cores and using this computational capacity is as simple as:

1. letting R know you plan to use multiple processors;
2. using the parallel for loop provided by the foreach package; and
3. paying proper attention to the use of parallel random number generators (RNG).

For example:

library(foreach) # load foreach
library(doFuture) # load doFuture (and future)
plan(multisession) # using multiple R sessions

The second line tells foreach that we will use the doFuture backend. By default, R
will attempt to determine how many cores are available and will run an appropriate
number of concurrent R processes.
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Particle filtering in pomp I
Recall the measles-outbreak example and the stochastic SIR model that we construct
in the previous lesson, we can using the pfilter function to compute the likelihood
using particle filtering method, given the parameters chosen by looking at simulations.
R code to build the model is available here. We can execute this code by sourcing the
file and check the parameters:

source("model_measSIR.R")
measSIR@params

Beta Gamma Rho k Eta N
1.5e+01 5.0e-01 5.0e-01 1.0e+01 6.0e-02 3.8e+04
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Particle filtering in pomp II
In pomp, we can compute the likelihood using the particle filtering method,
implemented by function pfilter. The argument Np assigns the number of particles
used:

library(pomp)
pf <- measSIR |> pfilter(Np=5000)
logLik(pf)

[1] -131.0779
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Particle filtering in pomp III
The particle filtering method relies heavily on the state process and the measurement
model. Therefore, it is necessary to make sure that the basic particle filter is working.

1. Check the rprocess and the rmeasure by simulation, as shown in Lesson 2:

measSIR |>
simulate(nsim=20,format="data.frame",include.data=TRUE) |>
ggplot(aes(x=week,y=reports,group=.id,color=.id=="data")) +
geom_line() + guides(color="none")
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Particle filtering in pomp IV
2. A diagnostic plot to check the rprocess and the dmeasure:

plot(pf)

▶ The data, reports;
▶ The effective sample size of

the particle filter, ess;
▶ The log-likelihood of each

observation conditioned on
the preceding ones,
cond.logLik.
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Particle filtering in pomp V
3. The Monte Carlo variability of the likelihood:

plan(multisession)
foreach (

i=1:10, .combine=c, .options.future=list(seed=652643293)
) %dofuture% {

measSIR |> pfilter(Np=5000)
} -> pf
logLik(pf) -> ll
logmeanexp(ll,se=TRUE)

est se
-130.037782 1.253115

Note that we set the parallel RNG seed in the foreach call.
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Review of likelihood-based inference
For now, let us suppose that software exists to evaluate and maximize the likelihood
function, up to a tolerable numerical error, for the dynamic models of interest. Our
immediate task is to think about how to use that capability.

▶ Likelihood-based inference (meaning statistical tools based on the likelihood
function) provides tools for parameter estimation, standard errors, hypothesis tests
and diagnosing model misspecification.

▶ Likelihood-based inference often (but not always) has favorable theoretical
properties. Here, we are not especially concerned with the underlying theory of
likelihood-based inference. On any practical problem, we can check the properties
of a statistical procedure by simulation experiments.
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The maximum likelihood estimate (MLE)
▶ A maximum likelihood estimate (MLE) is

̂𝜃 = argmax
𝜃

ℓ(𝜃),

where argmax𝜃 𝑔(𝜃) means a value of argument 𝜃 at which the maximum of the
function 𝑔 is attained, so 𝑔 (argmax𝜃 𝑔(𝜃)) = max𝜃 𝑔(𝜃).

▶ If there are many values of 𝜃 giving the same maximum value of the likelihood,
then an MLE still exists but is not unique.

▶ Note that argmax𝜃 ℒ(𝜃) and argmax𝜃 ℓ(𝜃) are the same. Why?
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Standard errors for the MLE
▶ Parameter estimates are not very useful without some measure of their

uncertainty.
▶ Usually, this means obtaining a confidence interval, or in practice an interval close

to a true confidence interval which should formally be called an approximate
confidence interval. In practice, the word “approximate” is often dropped!

There are three main approaches to estimating the statistical uncertainty in an MLE.
1. The Fisher information.
2. Profile likelihood estimation.
3. A simulation study, also known as a bootstrap.
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Fisher information
▶ A computationally quick approach when one has access to satisfactory numerical

second derivatives of the log-likelihood.
▶ The approximation is satisfactory only when ̂𝜃 is well approximated by a normal

distribution.
▶ Neither of the two requirements above are typically met for POMP models.
▶ A review of standard errors via Fisher information is provided as a supplement.
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Profile likelihood estimation
This approach is generally preferable to the Fisher information for POMP models.
We will explain this method below and put it into practice in the next lesson.
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The bootstrap
▶ If done carefully and well, this can be the best approach.
▶ A confidence interval is a claim about reproducibility. You claim, so far as your

model is correct, that on 95% of realizations from the model, a 95% confidence
interval you have constructed will cover the true value of the parameter.

▶ A simulation study can check this claim fairly directly, but requires the most effort.
▶ The simulation study takes time for you to develop and debug, time for you to

explain, and time for the reader to understand and check what you have done.
We usually carry out simulation studies to check our main conclusions only.

▶ Further discussion of bootstrap methods for POMP models is provided as a
supplement.
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Confidence intervals via the profile likelihood I
▶ Let’s consider the problem of obtaining a confidence interval for the first

component of 𝜃. We’ll write
𝜃 = (𝜙, 𝜓).

▶ The profile log-likelihood function of 𝜙 is defined to be

ℓprofile(𝜙) = max
𝜓

ℓ(𝜙, 𝜓).

In general, the profile likelihood of one parameter is constructed by maximizing
the likelihood function over all other parameters.

▶ Note that, max𝜙 ℓprofile(𝜙) = max𝜃 ℓ(𝜃) and that maximizing the profile
likelihood ℓprofile(𝜙) gives the MLE, ̂𝜃. Why?

▶ An approximate 95% confidence interval for 𝜙 is given by

{𝜙 ∶ ℓ( ̂𝜃) − ℓprofile(𝜙) < 1.92}.
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Confidence intervals via the profile likelihood II
▶ This is known as a profile likelihood confidence interval. The cutoff 1.92 is derived

using Wilks’ theorem, which we will discuss in more detail when we develop
likelihood ratio tests.

▶ Although the asymptotic justification of Wilks’ theorem is the same limit that
justifies the Fisher information standard errors, profile likelihood confidence
intervals tend to work better than Fisher information confidence intervals when 𝑁
is not so large—particularly when the log-likelihood function is not close to
quadratic near its maximum.
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The likelihood surface
▶ It is extremely useful to visualize the geometric surface defined by the likelihood

function.
▶ If Θ is two-dimensional, then the surface ℓ(𝜃) has features like a landscape.
▶ Local maxima of ℓ(𝜃) are peaks.
▶ Local minima are valleys.
▶ Peaks may be separated by a valley or may be joined by a ridge. If you go along

the ridge, you may be able to go from one peak to the other without losing much
elevation. Narrow ridges can be easy to fall off, and hard to get back on to.

▶ In higher dimensions, one can still think of peaks and valleys and ridges. However,
as the dimension increases it quickly becomes hard to imagine the surface.
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Exploring the likelihood surface: slices
▶ To get an idea of what the likelihood surface looks like in the neighborhood of a

point in parameter space, we can construct some likelihood slices.
▶ A likelihood slice is a cross-section through the likelihood surface.
▶ We’ll make slices for our Consett measles POMP model, in the 𝛽 and 𝜇𝐼𝑅

directions.
▶ Both slices will pass through our current candidate parameter vector, stored in the

pomp model object.
Questions:

1. What is the difference between a likelihood slice and a profile?
2. What is the consequence of this difference for the statistical interpretation of

these plots?
3. How should you decide whether to compute a profile or a slice?

Worked solution to the Exercise
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Slicing the measles SIR likelihood I
▶ We first construct a data frame to explore the parameter slice, with

40 × 3 + 40 × 3 = 240 rows:

slice_design(
center = coef(measSIR),
Beta = rep(seq(from=5,to=30,length=40),each=3),
Gamma = rep(seq(from=0.2,to=2,length=40),each=3)

) -> param_slice

dim(param_slice)

[1] 240 7

40 / 59



Slicing the measles SIR likelihood II
▶ We compute the likelihoods 3 times for each combination (i.e., row) in

param_slice:

library(iterators)
plan(multisession)
foreach (theta=iter(param_slice,"row"), .combine=rbind,

.options.future=list(seed=108028909)) %dofuture% {
measSIR |> pfilter(params=theta,Np=5000) -> pf
theta$loglik <- logLik(pf)
theta

} -> lik_slice
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Slicing the measles SIR likelihood III

▶ Slices offer a very limited perspective on the geometry of the likelihood surface.
▶ When there are only one or two unknown parameters, we can evaluate the

likelihood at a grid of points and visualize the surface directly.
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Two-dimensional likelihood slice I
▶ We first construct the parameters grid data frame param_grid, with

40 × 3 × 40 × 3 = 14, 400 rows:

expand.grid(
Beta = rep(seq(from=10,to=30,length=40), each=3),
Gamma = rep(seq(from=0.4,to=1.5,length=40), each=3),
Rho = 0.5, k=10, Eta=0.06, N=38000

) -> param_grid

dim(param_grid)

[1] 14400 6
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Two-dimensional likelihood slice II
▶ We then compute likelihoods for each of the combinations:

plan(multisession)
foreach (theta=iter(param_grid,"row"), .combine=rbind,

.options.future=list(seed=421776444)) %dofuture% {
measSIR |> pfilter(params=theta,Np=5000) -> pf
theta$loglik <- logLik(pf)
theta

} -> lik_grid
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Two-dimensional likelihood slice III

In the above, all points with log-likelihoods less than 25 units below the maximum are
shown in grey.

▶ Notice some features of the log-likelihood surface, and its estimate from the
particle filter, that can cause difficulties for numerical methods:

1. The surface is wedge-shaped, so its curvature varies considerably. By contrast,
asymptotic theory predicts a parabolic surface that has constant curvature.

2. Monte Carlo noise in the likelihood evaluation makes it hard to pick out exactly
where the likelihood is maximized. Nevertheless, the major features of the likelihood
surface are evident despite the noise.

▶ Wedge-shaped relationships between parameters, and nonlinear relationships, are
common features of epidemiological dynamic models. We’ll see this in the case
studies.
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Cost of a particle-filter calculation
▶ How much computer processing time does a particle filter take?
▶ How does this scale with the number of particles?

Form a conjecture based upon your understanding of the algorithm. Test your
conjecture by running a sequence of particle filter operations, with increasing numbers
of particles (Np), measuring the time taken for each one using system.time. Plot and
interpret your results.

Worked solution to the Exercise
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log-likelihood estimation I
Here are some desiderata for a Monte Carlo log-likelihood approximation:

▶ It should have low Monte Carlo bias and variance.
▶ It should be presented together with estimates of the bias and variance so that we

know the extent of Monte Carlo uncertainty in our results.
▶ It should be computed in a length of time appropriate for the circumstances.

Set up a likelihood evaluation for the measles model, choosing the numbers of particles
and replications so that your evaluation takes approximately one minute on your
machine.

▶ Provide a Monte Carlo standard error for your estimate.
▶ Comment on the bias of your estimate.
▶ Use doFuture to take advantage of multiple cores on your computer to improve

your estimate.
Worked solution to the Exercise
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Exercises
1. One-dimensional likelihood slice: Compute several likelihood slices in the 𝜂

direction.
2. Two-dimensional likelihood slice: Compute a slice of the likelihood in the 𝛽-𝜂

plane.
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Maximizing the particle filter likelihood
▶ Likelihood maximization is key to profile intervals, likelihood ratio tests and AIC

as well as the computation of the MLE.
▶ An initial approach to likelihood maximization might be to stick the particle filter

log-likelihood estimate into a standard numerical optimizer, such as the
Nelder-Mead algorithm.

▶ In practice this approach is unsatisfactory on all but the smallest POMP models.
Standard numerical optimizers are not designed to maximize noisy and
computationally expensive Monte Carlo functions.

▶ Further investigation into this approach is available as a supplement.
▶ We’ll present an iterated filtering algorithm for maximizing the likelihood in a way

that takes advantage of the structure of POMP models and the particle filter.
▶ First, let’s think a bit about some practical considerations in interpreting the MLE

for a POMP.
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Likelihood-based model selection and model diagnostics
▶ For nested hypotheses, we can carry out model selection by likelihood ratio tests.
▶ For non-nested hypotheses, likelihoods can be compared using Akaike’s

information criterion (AIC) or related methods.
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Likelihood ratio tests for nested hypotheses I
▶ The whole parameter space on which the model is defined is Θ ⊂ ℝ𝐷.
▶ Suppose we have two nested hypotheses

𝐻⟨0⟩ ∶ 𝜃 ∈ Θ⟨0⟩,
𝐻⟨1⟩ ∶ 𝜃 ∈ Θ⟨1⟩,

defined via two nested parameter subspaces, Θ⟨0⟩ ⊂ Θ⟨1⟩, with respective
dimensions 𝐷⟨0⟩ < 𝐷⟨1⟩ ≤ 𝐷.

▶ We consider the log-likelihood maximized over each of the hypotheses,

ℓ⟨0⟩ = sup
𝜃∈Θ⟨0⟩

ℓ(𝜃),

ℓ⟨1⟩ = sup
𝜃∈Θ⟨1⟩

ℓ(𝜃).
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Likelihood ratio tests for nested hypotheses II
▶ Wilks approximation: under the hypothesis 𝐻⟨0⟩,

ℓ⟨1⟩ − ℓ⟨0⟩ ≈ 1
2 𝜒2

𝐷⟨1⟩−𝐷⟨0⟩ ,

where 𝜒2
𝑑 is a chi-squared random variable on 𝑑 degrees of freedom and ≈ means

“is approximately distributed as”.
▶ The Wilks approximation can be used to construct a hypothesis test of the null

hypothesis 𝐻⟨0⟩ against the alternative 𝐻⟨1⟩.
▶ This is called a likelihood ratio test since a difference of log-likelihoods

corresponds to a ratio of likelihoods.
▶ When the data are IID, 𝑁 → ∞, and the hypotheses satisfy suitable regularity

conditions, this approximation can be derived mathematically and is known as
Wilks’ theorem.
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Likelihood ratio tests for nested hypotheses III
▶ The chi-squared approximation to the likelihood ratio statistic may be useful, and

can be assessed empirically by a simulation study, even in situations that do not
formally satisfy any known theorem.
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Wilks’ theorem and profile likelihood I
▶ Suppose we have an MLE, written ̂𝜃 = ( ̂𝜙, ̂𝜓), and a profile log-likelihood for 𝜙,

given by ℓprofile(𝜙).
▶ Consider the likelihood ratio test for the nested hypotheses

𝐻⟨0⟩ ∶ 𝜙 = 𝜙0,
𝐻⟨1⟩ ∶ 𝜙 unconstrained.

▶ We can compute the 95%-ile for a chi-squared distribution with one degree of
freedom: qchisq(0.95,df=1)= 3.841.

▶ Wilks’ theorem then gives us a hypothesis test with approximate size 5% that
rejects 𝐻⟨0⟩ if ℓprofile( ̂𝜙) − ℓprofile(𝜙0) < 3.84/2.
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Wilks’ theorem and profile likelihood II
▶ It follows that, with probability 95%, the true value of 𝜙 falls in the set

{𝜙 ∶ ℓprofile( ̂𝜙) − ℓprofile(𝜙) < 1.92}.

So, we have constructed a profile likelihood confidence interval, consisting of the
set of points on the profile likelihood within 1.92 log units of the maximum.

▶ This is an example of a general duality between confidence intervals and
hypothesis tests.

55 / 59

https://www.stat.nus.edu.sg/~wloh/lecture17.pdf
https://www.stat.nus.edu.sg/~wloh/lecture17.pdf


Akaike’s information criterion (AIC) I
▶ Likelihood ratio tests provide an approach to model selection for nested

hypotheses, but what do we do when models are not nested?
▶ A more general approach is to compare likelihoods of different models by

penalizing the likelihood of each model by a measure of its complexity.
▶ Akaike’s information criterion AIC is given by

AIC = −2 ℓ( ̂𝜃) + 2 𝐷

“Minus twice the maximized log-likelihood plus twice the number of parameters.”
▶ We are invited to select the model with the lowest AIC score.
▶ AIC was derived as an approach to minimizing prediction error. Increasing the

number of parameters leads to additional overfitting which can decrease
predictive skill of the fitted model.
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Akaike’s information criterion (AIC) II
▶ Viewed as a hypothesis test, AIC may have weak statistical properties. It can be a

mistake to interpret AIC by making a claim that the favored model has been
shown to provide a superior explanation of the data. However, viewed as a way to
select a model with reasonable predictive skill from a range of possibilities, it is
often useful.

▶ AIC does not penalize model complexity beyond the consequence of reduced
predictive skill due to overfitting. One can penalize complexity by incorporating a
more severe penalty than the 2𝐷 term above, such as via BIC.

▶ A practical approach is to use AIC, while taking care to view it as a procedure to
select a reasonable predictive model and not as a formal hypothesis test.
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License, acknowledgments, and links
▶ This lesson is prepared for the Simulation-based Inference for Epidemiological

Dynamics module at the Summer Institute in Statistics and Modeling in Infectious
Diseases, SISMID.

▶ The materials build on previous versions of this course and related courses.
▶ Licensed under the Creative Commons Attribution-NonCommercial license. Please

share and remix non-commercially, mentioning its origin.
▶ Produced with R version 4.3.2 and pomp version 5.10.
▶ Compiled on 2024-07-24.
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