
Lesson 4: Iterated filtering: principles and practice

Qianying (Ruby) Lin Spencer J. Fox Zian (Larry) Zhuang

1 / 100

Introduction
▶ This tutorial covers likelihood estimation via the method of iterated filtering.
▶ It presupposes familiarity with building partially observed Markov process (POMP)

objects in the R package pomp (King, Nguyen, and Ionides 2016).
▶ This tutorial follows on from the topic of particle filtering (also known as

sequential Monte Carlo) via pfilter in pomp.

2 / 100

Objectives
1. To review the available options for inference on POMP models, to put iterated

filtering in context.
2. To understand how iterated filtering algorithms carry out repeated particle

filtering operations, with randomly perturbed parameter values, in order to
maximize the likelihood.

3. To gain experience carrying out statistical investigations using iterated filtering in
a relatively simple situation: fitting an SIR model to data from a measles outbreak.

3 / 100

Classification of statistical methods for POMP models I
▶ Many, many statistical methods have been proposed for inference on POMP

models King, Nguyen, and Ionides (2016).
▶ The volume of research indicates both the importance and the difficulty of the

problem.
▶ Let’s start by considering three criteria to categorize inference methods:

▶ the plug-and-play property
▶ full-information or feature-based
▶ frequentist or Bayesian

4 / 100

Plug-and-play (also called simulation-based) methods I
▶ Inference methodology that calls rprocess but not dprocess is said to be

plug-and-play. All popular modern Monte Carlo methods for POMP models are in
this category.

▶ “Simulation-based” is equivalent to “plug-and-play”.
▶ Historically, simulation-based meant simulating forward from initial conditions to

the end of the time series.
▶ However, particle filtering methods instead consider each observation interval

sequentially. They carry out multiple, carefully selected, simulations over each
interval.

5 / 100

Plug-and-play (also called simulation-based) methods II
▶ Plug-and-play methods can call dmeasure. A method that uses only rprocess

and rmeasure is called “doubly plug-and-play”.
▶ Two non-plug-and-play methods—expectation-maximization (EM) and Markov

chain Monte Carlo (MCMC)—have theoretical convergence problems for nonlinear
POMP models. The failures of these two workhorses of statistical computation
have prompted development of alternative methodologies.

6 / 100

Full-information and feature-based methods I
▶ Full-information methods are defined to be those based on the likelihood function

for the full data (i.e., likelihood-based frequentist inference and Bayesian
inference).

▶ Feature-based methods either consider a summary statistic (a function of the
data) or work with an an alternative to the likelihood.

▶ Asymptotically, full-information methods are statistically efficient and
feature-based methods are not.

▶ In some cases, loss of statistical efficiency might be an acceptable tradeoff for
advantages in computational efficiency.

7 / 100

Full-information and feature-based methods II
▶ However:

▶ Good low-dimensional summary statistics can be hard to find.
▶ When using statistically inefficient methods, it can be hard to know how much

information you are losing.
▶ Intuition and scientific reasoning can be inadequate tools to derive informative

low-dimensional summary statistics (Shrestha, King, and Rohani 2011,
Ionides2011a).

8 / 100

Bayesian and frequentist methods I
▶ Recently, plug-and-play Bayesian methods have been discovered:

▶ particle Markov chain Monte Carlo (PMCMC) (Andrieu, Doucet, and Holenstein
2010).

▶ approximate Bayesian computation (ABC) (Toni et al. 2009).
▶ Prior belief specification is both the strength and weakness of Bayesian

methodology:
▶ The likelihood surface for nonlinear POMP models often contains nonlinear ridges

and variations in curvature.

9 / 100

Bayesian and frequentist methods II
▶ These situations bring into question the appropriateness of independent priors

derived from expert opinion on marginal distributions of parameters.
▶ They also are problematic for specification of “flat” or “uninformative” prior

beliefs.
▶ Expert opinion can be treated as data for non-Bayesian analysis. However, our

primary task is to identify the information in the data under investigation, so it
can be helpful to use methods that do not force us to make our conclusions
dependent on quantification of prior beliefs.

10 / 100

Summary

11 / 100

Full-information, plug-and-play, frequentist methods I
▶ Iterated filtering methods Edward L. Ionides et al. (2015) are the only currently

available, full-information, plug-and-play, frequentist methods for POMP models.
▶ Iterated filtering methods have been shown to solve likelihood-based inference

problems for epidemiological situations which are computationally intractable for
available Bayesian methodology (Edward L. Ionides et al. 2015).

12 / 100

An iterated filtering algorithm (IF2) I
We focus on the IF2 algorithm of Edward L. Ionides et al. (2015). In this algorithm:

▶ Each iteration consists of a particle filter, carried out with the parameter vector,
for each particle, doing a random walk.

▶ At the end of the time series, the collection of parameter vectors is recycled as
starting parameters for the next iteration.

▶ The random-walk variance decreases at each iteration.
In theory, this procedure converges toward the region of parameter space maximizing
the maximum likelihood.
In practice, we can test this claim on examples.

13 / 100

An iterated filtering algorithm (IF2) II

14 / 100

IF2 algorithm pseudocode I
Input:

▶ simulators for 𝑓𝑋0
(𝑥0; 𝜃) and 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑥𝑛−1; 𝜃)
▶ evaluator for 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃)
▶ data, 𝑦∗

1∶𝑁
Algorithmic parameters and corresponding mif2 arguments:

▶ number of iterations, Nmif = 𝑀
▶ number of particles, Np = 𝐽
▶ initial parameter swarm, params = {Θ0

𝑗 , 𝑗 = 1, … , 𝐽}
▶ random walk standard deviation for each parameter, rw.sd, squared to construct

a diagonal variance matrix, 𝑉𝑛
▶ cooling fraction in 50 iterations, cooling.fraction.50 = 𝑎

Output:
▶ final parameter swarm, {Θ𝑀

𝑗 , 𝑗 = 1, … , 𝐽}

15 / 100

IF2 algorithm pseudocode II
Procedure:

1. For 𝑚 in 1∶𝑀
2. Θ𝐹,𝑚

0,𝑗 ∼ Normal(Θ𝑚−1
𝑗 , 𝑉0 𝑎2𝑚/50) for 𝑗 in 1∶𝐽

3. 𝑋𝐹,𝑚
0,𝑗 ∼ 𝑓𝑋0

(𝑥0; Θ𝐹,𝑚
0,𝑗) for 𝑗 in 1∶𝐽

4. For 𝑛 in 1∶𝑁
5. Θ𝑃,𝑚

𝑛,𝑗 ∼ Normal(Θ𝐹,𝑚
𝑛−1,𝑗, 𝑉𝑛 𝑎2𝑚/50) for 𝑗 in 1∶𝐽

6. 𝑋𝑃,𝑚
𝑛,𝑗 ∼ 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑋𝐹,𝑚
𝑛−1,𝑗; Θ𝑃,𝑚

𝑛,𝑗) for 𝑗 in 1∶𝐽
7. 𝑤𝑚

𝑛,𝑗 = 𝑓𝑌𝑛|𝑋𝑛
(𝑦∗

𝑛|𝑋𝑃,𝑚
𝑛,𝑗 ; Θ𝑃,𝑚

𝑛,𝑗) for 𝑗 in 1∶𝐽
8. Draw 𝑘1∶𝐽 with 𝑃 [𝑘𝑗 = 𝑖] = 𝑤𝑚

𝑛,𝑖/ ∑𝐽
𝑢=1 𝑤𝑚

𝑛,𝑢

9. Θ𝐹,𝑚
𝑛,𝑗 = Θ𝑃,𝑚

𝑛,𝑘𝑗
and 𝑋𝐹,𝑚

𝑛,𝑗 = 𝑋𝑃,𝑚
𝑛,𝑘𝑗

for 𝑗 in 1∶𝐽
10. End For
11. Set Θ𝑚

𝑗 = Θ𝐹,𝑚
𝑁,𝑗 for 𝑗 in 1∶𝐽

12. End For

16 / 100

IF2 algorithm pseudocode III
Remarks:

▶ The 𝑁 loop (lines 4 through 10) is a basic particle filter applied to a model with
stochastic perturbations to the parameters.

▶ The 𝑀 loop repeats this particle filter with decreasing perturbations.
▶ The superscript 𝐹 in Θ𝐹,𝑚

𝑛,𝑗 and 𝑋𝐹,𝑚
𝑛,𝑗 denote solutions to the filtering problem,

with the particles 𝑗 = 1, … , 𝐽 providing a Monte Carlo representation of the
conditional distribution at time 𝑛 given data 𝑦∗

1∶𝑛 for filtering iteration 𝑚.
▶ The superscript 𝑃 in Θ𝑃,𝑚

𝑛,𝑗 and 𝑋𝑃,𝑚
𝑛,𝑗 denote solutions to the prediction problem,

with the particles 𝑗 = 1, … , 𝐽 providing a Monte Carlo representation of the
conditional distribution at time 𝑛 given data 𝑦∗

1∶𝑛−1 for filtering iteration 𝑚.
▶ The weight 𝑤𝑚

𝑛,𝑗 gives the likelihood of the data at time 𝑛 for particle 𝑗 in filtering
iteration 𝑚.

17 / 100

Analogy with evolution by natural selection I
▶ The parameters characterize the genotype.
▶ The swarm of particles is a population.
▶ The likelihood, a measure of the compatibility between the parameters and the

data, is the analogue of fitness.
▶ Each successive observation is a new generation.
▶ Since particles reproduce in each generation in proportion to their likelihood, the

particle filter acts like natural selection.
▶ The artificial perturbations augment the “genetic” variance and therefore

correspond to mutation.
▶ IF2 increases the fitness of the population of particles.
▶ However, because our scientific interest focuses on the model without the artificial

perturbations, we decrease the intensity of the latter with successive iterations.

18 / 100

Applying IF2 to the Consett measles outbreak
Let us apply IF2 to our analysis of the Consett measles outbreak we began to examine
in Lessons 2 and 3.
The following loads the data, pomp, and the stochastic SIR model we constructed
there.

source("model_measSIR.R")

19 / 100

Setting up the estimation problem
Let’s assume that the population size, 𝑁 , is known accurately. We’ll fix that
parameter.
Let’s revisit the assumption that the infectious period is 2 weeks, imagining that we
have access to the results of household and clinical studies that have concluded that
infected patients shed the virus for 3–4~da. We’ll use these results to constrain the
infectious period in our model to 3.5~da, i.e., 𝛾 = 2 wk−1. We also fix 𝑘 = 10. Later,
we can relax our assumptions.

fixed_params <- c(N=38000, Gamma=2, k=10)
coef(measSIR,names(fixed_params)) <- fixed_params
coef(measSIR)

Beta Gamma Rho k Eta N
1.5e+01 2.0e+00 5.0e-01 1.0e+01 6.0e-02 3.8e+04

We proceed to estimate 𝛽, 𝜂, and 𝜌.
20 / 100

Sanity check
In Lesson 3, we have introduced how to test the codes and the particle filter from three
aspects. Now we can compare the simulations with the raw data using the proposed
parameters:

21 / 100

Parallel computing
It will be helpful to parallelize most of the computations. Lesson 3 discusses how to
accomplish this using foreach.

library(foreach)
library(doFuture)
plan(multisession)

22 / 100

https://kingaa.github.io/sbied/pfilter/

Running a particle filter I
We proceed to carry out replicated particle filters at an initial guess of 𝛽 = 15,
𝜂 = 0.06, and 𝜌 = 0.5.

foreach(i=1:10,.combine=c,
.options.future=list(seed=TRUE)) %dofuture% {
measSIR |> pfilter(Np=5000)

} -> pf
pf |> logLik() |> logmeanexp(se=TRUE) -> L_pf
L_pf

est se
-268.951731 2.168283

In 3.24 seconds, using 10 cores, we obtain an unbiased likelihood estimate of -269 with
a Monte Carlo standard error of 2.2.

23 / 100

Building up a picture of the likelihood surface I
▶ Given a model and a set of data, the likelihood surface is well defined, though it

may be difficult to visualize.
▶ We can develop a progressively more complete picture of this surface by storing

likelihood estimates whenever we compute them.
▶ It is a very good idea to set up a database within which to store the likelihood of

every point for which we have an estimated likelihood.
▶ This will become larger and more complete as our parameter-space search goes on

and will be a basis for a variety of explorations.
At this point, we’ve computed the likelihood at a single point. Let’s store this point,
together with the estimated likelihood and our estimate of the standard error on that
likelihood, in a CSV file:

24 / 100

Building up a picture of the likelihood surface II
pf[[1]] |> coef() |> bind_rows() |>
bind_cols(loglik=L_pf[1],loglik.se=L_pf[2]) |>
write_csv("measles_params.csv")

25 / 100

A local search of the likelihood surface I
Let’s carry out a local search using mif2 around this point in parameter space.

▶ We need to choose the rw.sd and cooling.fraction.50 algorithmic
parameters.

▶ Since 𝛽 and 𝛾 will be estimated on the log scale, and we expect that
multiplicative perturbations of these parameters will have roughly similar effects
on the likelihood, we’ll use a perturbation size of 0.02, which we imagine will have
a small but non-negligible effect.

▶ For simplicity, we’ll use the same perturbation size on 𝜌.
▶ We fix cooling.fraction.50=0.5, so that after 50 mif2 iterations, the

perturbations are reduced to half their original magnitudes.

26 / 100

A local search of the likelihood surface II
foreach(i=1:20,.combine=c,
.options.future=list(seed=482947940)

) %dofuture% {
measSIR |>

mif2(
Np=2000, Nmif=50, cooling.fraction.50=0.5,
rw.sd=rw_sd(Beta=0.02, Rho=0.02, Eta=ivp(0.02)),
partrans=parameter_trans(

log="Beta",logit=c("Rho","Eta")
),
paramnames=c("Beta","Rho","Eta")

)
} -> mifs_local

27 / 100

Windows issues
Some Windows users have reported trouble with the above code. This appears to be
due to certain Windows security features that make it impossible to compile codes
inside a parallel block. We have found a workaround.

▶ This document describes the problem and the workaround.
▶ A Windows-safe version of the code for this document is available here.

28 / 100

../misc/windows.html
./main_win.R

Iterated filtering diagnostics I
We obtain some diagnostic plots with the plot command applied to mifs_local.
Here is a way to get a prettier version:

mifs_local |>
traces() |>
melt() |>
ggplot(aes(x=iteration,y=value,group=.L1,color=factor(.L1)))+
geom_line()+
guides(color="none")+
facet_wrap(~name,scales="free_y")

29 / 100

Iterated filtering diagnostics II

30 / 100

Iterated filtering diagnostics III
▶ We see that the likelihood increases as the iterations proceed, though there is

considerable variability due to
1. the poorness of our starting guess and
2. the stochastic nature of this Monte Carlo algorithm.

▶ We see movement in the parameters, though variability remains.

31 / 100

Estimating the likelihood I
Although the filtering carried out by mif2 in the final filtering iteration generates an
approximation to the likelihood at the resulting point estimate, this is not good enough
for reliable inference.

▶ Partly, this is because parameter perturbations are applied in the last filtering
iteration, so that the likelihood reported by mif2 is not identical to that of the
model of interest.

▶ Partly, this is because mif2 is usually carried out with fewer particles than are
needed for a good likelihood evaluation.

32 / 100

Estimating the likelihood II
Therefore, we evaluate the likelihood, together with a standard error, using replicated
particle filters at each point estimate.

foreach(mf=mifs_local,.combine=rbind,
.options.future=list(seed=900242057)

) %dofuture% {
evals <- replicate(10, logLik(pfilter(mf,Np=5000)))
ll <- logmeanexp(evals,se=TRUE)
mf |> coef() |> bind_rows() |>

bind_cols(loglik=ll[1],loglik.se=ll[2])
} -> results

On 10 processors, this local investigation took 14~sec for the maximization and 5~sec
for the likelihood evaluation.

33 / 100

Estimating the likelihood III
results |> filter(loglik==max(loglik))

A tibble: 1 x 8
Beta Gamma Rho k Eta N loglik loglik.se
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 26.0 2 0.304 10 0.0904 38000 -112. 0.0630

These repeated stochastic maximizations can also show us the geometry of the
likelihood surface in a neighborhood of this point estimate:

pairs(~loglik+Beta+Eta+Rho,data=results,pch=16)

34 / 100

Estimating the likelihood IV

35 / 100

Building up a picture of the likelihood surface
This plot shows a hint of a ridge in the likelihood surface (cf.~the 𝛽-𝜂 panel).
However, the sampling is as yet too sparse to give a clear picture.
We add these newly explored points to our database,

read_csv("measles_params.csv") |>
bind_rows(results) |>
arrange(-loglik) |>
write_csv("measles_params.csv")

and move on to a more thorough exploration of the likelihood surface.

36 / 100

A global search of the likelihood surface I
▶ When carrying out parameter estimation for dynamic systems, we need to specify

beginning values for both the dynamic system (in the state space) and the
parameters (in the parameter space).

▶ To avoid confusion, we use the term “initial values” to refer to the state of the
system at 𝑡0 and “starting values” to refer to the point in parameter space at
which a search is initialized.

▶ Practical parameter estimation involves trying many starting values for the
parameters.

▶ One way to approach this is to choose a large box in parameter space that
contains all remotely sensible parameter vectors.

▶ If an estimation method gives stable conclusions with starting values drawn
randomly from this box, this gives some confidence that an adequate global search
has been carried out.

37 / 100

A global search of the likelihood surface II
For our measles model, a box containing reasonable parameter values might be
𝛽 ∈ (5, 80), 𝜌 ∈ (0.2, 0.9), 𝜂 ∈ (0, 1).
We are now ready to carry out likelihood maximizations from diverse starting points.

set.seed(2062379496)

runif_design(
lower=c(Beta=5,Rho=0.2,Eta=0),
upper=c(Beta=80,Rho=0.9,Eta=1),
nseq=400

) -> guesses

mf1 <- mifs_local[[1]]

38 / 100

A global search of the likelihood surface III
foreach(guess=iter(guesses,"row"), .combine=rbind,
.options.future=list(seed=1270401374)

) %dofuture% {
mf1 |>

mif2(params=c(guess,fixed_params)) |>
mif2(Nmif=100) -> mf

replicate(
10,
mf |> pfilter(Np=5000) |> logLik()

) |>
logmeanexp(se=TRUE) -> ll

mf |> coef() |> bind_rows() |>
bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

39 / 100

A global search of the likelihood surface IV
▶ The above codes run one search from each of 400 starting values.
▶ Each search consists of an initial run of 50 IF2 iterations, followed by another 100

iterations.
▶ These codes exhibit a general pomp behavior:

▶ Re-running a command on an object (i.e., mif2 on mf1) created by the same
command preserves the algorithmic arguments.

▶ In particular, running mif2 on the result of a mif2 computation re-runs IF2 from the
endpoint of the first run.

▶ In the second computation, by default, all algorithmic parameters are preserved; here
we overrode the default choice of Nmif.

▶ Following the mif2 computations, the particle filter is used to evaluate the
likelihood, as before.

40 / 100

A global search of the likelihood surface V
results |> filter(loglik==max(loglik))

A tibble: 1 x 8
Beta Rho Eta N Gamma k loglik loglik.se
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 3.96 0.0602 0.562 38000 2 10 -104. 0.0273

▶ In contrast to the local-search codes above, here we return only the endpoint of
the search, together with the likelihood estimate and its standard error in a named
vector.

▶ The best result of this search had a likelihood of -104.3 with a standard error of
0.03.

▶ This took 13.7 minutes altogether using 10 processors.

41 / 100

A global search of the likelihood surface VI
Again, we attempt to visualize the global geometry of the likelihood surface using a
scatterplot matrix. In particular, here we plot both the starting values (grey) and the
IF2 estimates (red).

read_csv("measles_params.csv") |>
filter(loglik>max(loglik)-50) |>
bind_rows(guesses) |>
mutate(type=if_else(is.na(loglik),"guess","result")) |>
arrange(type) -> all

pairs(~loglik+Beta+Eta+Rho, data=all, pch=16, cex=0.3,
col=ifelse(all$type=="guess",grey(0.5),"red"))

42 / 100

A global search of the likelihood surface VII

43 / 100

A global search of the likelihood surface VIII
▶ We see that optimization attempts from diverse remote starting points converge

on a particular region in parameter space.
▶ The estimates have comparable likelihoods, despite their considerable variability.
▶ This gives us some confidence in our maximization procedure.

44 / 100

A global search of the likelihood surface IX
The projections of the estimates give us ‘poor mans profiles’ ’:

all |>
filter(type=="result") |>
filter(loglik>max(loglik)-10) |>
ggplot(aes(x=Eta,y=loglik))+
geom_point()+
labs(

x=expression(Eta),
title="poor man's profile likelihood"

)

45 / 100

A global search of the likelihood surface X

46 / 100

Profile likelihood over 𝜂 I
▶ The curvature displayed in the upper envelope of the above plot suggests that

there is indeed information in the data with respect to the susceptible fraction, 𝜂.
▶ To solidify this evidence, let’s compute a profile likelihood over this parameter.
▶ Recall that this means determining, for each value of 𝜂, the best likelihood that

the model can achieve.
▶ To do this, we’ll first bound the uncertainty by putting a box around the

highest-likelihood estimates we’ve found so far.
▶ Within this box, we’ll choose some random starting points, for each of several

values of 𝜂.

47 / 100

Profile likelihood over 𝜂 II
read_csv("measles_params.csv") |>
filter(loglik>max(loglik)-20,loglik.se<2) |>
sapply(range) -> box

box

Beta Gamma Rho k Eta N
[1,] 1.824688 2 0.03405657 10 0.03628984 38000
[2,] 69.791919 2 0.60343428 10 0.99982180 38000

loglik loglik.se
[1,] -122.7423 0.01462075
[2,] -104.2847 0.56960880

48 / 100

Profile likelihood over 𝜂 III
freeze(seed=1196696958,
profile_design(

Eta=seq(0.01,0.95,length=40),
lower=box[1,c("Beta","Rho")],
upper=box[2,c("Beta","Rho")],
nprof=15, type="runif"

)) -> guesses
plot(guesses)

49 / 100

Profile likelihood over 𝜂 IV

50 / 100

Profile likelihood over 𝜂 V
▶ Now, we’ll start one independent sequence of iterated filtering operations from

each of these points.
▶ We’ll be careful to keep 𝜂 fixed.
▶ This is accomplished by not giving this parameter a random perturbation in the

mif2 call.

51 / 100

Profile likelihood over 𝜂 VI
foreach(guess=iter(guesses,"row"), .combine=rbind,
.options.future=list(seed=830007657)

) %dofuture% {
mf1 |>

mif2(params=c(guess,fixed_params),
rw.sd=rw_sd(Beta=0.02,Rho=0.02)) |>

mif2(Nmif=100,cooling.fraction.50=0.3) -> mf
replicate(

10,
mf |> pfilter(Np=5000) |> logLik()) |>
logmeanexp(se=TRUE) -> ll

mf |> coef() |> bind_rows() |>
bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

52 / 100

Visualizing profile likelihood I
As always, we save the results in our global database and plot the results.

read_csv("measles_params.csv") |>
bind_rows(results) |>
filter(is.finite(loglik)) |>
arrange(-loglik) |>
write_csv("measles_params.csv")

read_csv("measles_params.csv") |>
filter(loglik>max(loglik)-10) -> all

pairs(~loglik+Beta+Eta+Rho,data=all,pch=16)

53 / 100

Visualizing profile likelihood II

54 / 100

Visualizing profile likelihood III
Plotting just the results of the profile calculation reveals that, while some of the IF2
runs either become “stuck” on local minima or run out of opportunity to reach the
heights of the likelihood surface, many of the runs converge on high likelihoods.

results |>
ggplot(aes(x=Eta,y=loglik))+
geom_point() + xlab(expression(eta))

55 / 100

Visualizing profile likelihood IV

56 / 100

Visualizing profile likelihood V
A closer look shows what at first appears to be quite a flat surface over much of the
explored range of 𝜂. Note that this appearance is due to the vertical scale, which is
driven by the very low likelihoods associated with the smallest values of 𝜂.

results |>
filter(is.finite(loglik)) |>
group_by(round(Eta,5)) |>
filter(rank(-loglik)<3) |>
ungroup() |>
filter(loglik>max(loglik)-20) |>
ggplot(aes(x=Eta,y=loglik))+
geom_point() + xlab(expression(eta))

57 / 100

Visualizing profile likelihood VI

58 / 100

Visualizing profile likelihood VII
Focusing on just the top of the surface shows that, in fact, one is able to estimate 𝜂
using these data. In the following plot, the cutoff for the 95% confidence interval (CI)
is shown.

59 / 100

Visualizing profile likelihood VIII
maxloglik <- max(results$loglik,na.rm=TRUE)
ci.cutoff <- maxloglik-0.5*qchisq(df=1,p=0.95)

results |>
filter(is.finite(loglik)) |>
group_by(round(Eta,5)) |>
filter(rank(-loglik)<3) |>
ungroup() |>
ggplot(aes(x=Eta,y=loglik))+
geom_point() + xlab(expression(eta)) +
geom_smooth(method="loess",span=0.25)+
geom_hline(color="red",yintercept=ci.cutoff)+
lims(y=maxloglik-c(5,0))

60 / 100

Visualizing profile likelihood IX

61 / 100

Visualizing profile likelihood X
▶ As one varies 𝜂 across the profile, the model compensates by adjusting the other

parameters.
▶ It can be very instructive to understand how the model does this.
▶ For example, how does the reporting efficiency, 𝜌, change as 𝜂 is varied?
▶ We can plot 𝜌 vs 𝜂 across the profile.
▶ This is called a profile trace.

62 / 100

Visualizing profile likelihood XI
results |>
filter(is.finite(loglik)) |>
group_by(round(Eta,5)) |>
filter(rank(-loglik)<3) |>
ungroup() |>
mutate(in_ci=loglik>max(loglik)-1.92) |>
ggplot(aes(x=Eta,y=Rho,color=in_ci))+
geom_point()+
labs(

color="inside 95% CI?",
x=expression(eta),
y=expression(rho),
title="profile trace"

)

63 / 100

Visualizing profile likelihood XII

64 / 100

Profile over 𝜌 I
While the above profile trace is suggestive that the 95% CI for 𝜌 must be between
roughly 4% and 20%, to confirm this, we should construct a proper profile likelihood
over 𝜌. We do so now.
This time, we will initialize the IF2 computations at points we have already established
have high likelihoods.

read_csv("measles_params.csv") |>
group_by(cut=round(Rho,2)) |>
filter(rank(-loglik)<=10) |>
ungroup() |>
arrange(-loglik) |>
select(-cut,-loglik,-loglik.se) -> guesses

65 / 100

Profile over 𝜌 II
foreach(guess=iter(guesses,"row"), .combine=rbind,
.options.future=list(seed=2105684752)

) %dofuture% {
mf1 |>

mif2(params=guess,
rw.sd=rw_sd(Beta=0.02,Eta=ivp(0.02))) |>

mif2(Nmif=100,cooling.fraction.50=0.3) |>
mif2() -> mf

replicate(
10,
mf |> pfilter(Np=5000) |> logLik()) |>
logmeanexp(se=TRUE) -> ll

mf |> coef() |> bind_rows() |>
bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results
66 / 100

Profile over 𝜌: results I

67 / 100

Profile over 𝜌: results II

68 / 100

Profile over 𝜌: results III
results |>
filter(loglik>max(loglik)-0.5*qchisq(df=1,p=0.95)) |>
summarize(min=min(Rho),max=max(Rho)) -> rho_ci

The data appear to be consistent with reporting efficiencies in the 3.4–50% range
(95% CI).

69 / 100

The investigation continues….

70 / 100

Parameter estimates as model predictions I
▶ The estimated parameters are one kind of model prediction.
▶ When we can estimate parameters using other data, we can test these predictions.
▶ In the case of a highly contagious, immunizing childhood infection such as

measles, we can obtain an estimate of the reporting efficiency, 𝜌 by simply
regressing cumulative cases on cumulative births (Anderson and May 1991) over
many years.

▶ When we do this for Consett, we see that the reporting efficiency is roughly 60%.
▶ Since such a value makes the outbreak data quite unlikely, the prediction does not

appear to be borne out.
▶ We can conclude that one or more of our model assumptions is inconsistent with

the data.
▶ Let’s revisit our assumption that the infectious period is known to be 0.5~wk.

71 / 100

Parameter estimates as model predictions II
▶ Indeed, it would not be surprising were we to find that the effective infectious

period, at the population scale, were somewhat shorter than the clinical infectious
period.

▶ For example, confinement of patients should reduce contact rates, and might
therefore curtail the effective infectious period.

▶ To investigate this, we’ll relax our assumption about the value of 𝛾.

72 / 100

Another global search I
We will estimate the model under the assumption that 𝜌 = 0.6, but without making
assumptions about the duration of the infectious period. As before, we’ll construct a
random design of starting parameters.

freeze(seed=55266255,
runif_design(

lower=c(Beta=5,Gamma=0.2,Eta=0),
upper=c(Beta=80,Gamma=5,Eta=0.99),
nseq=1000

)) |>
mutate(

Rho=0.6, k=10, N=38000
) -> guesses

73 / 100

Another global search II
▶ For each of these starting points, we’ll run a series of IF2 computations.
▶ Since we have gained some experience applying mif2 to this model and these

data, we have some expectation about how much computation is required.
▶ In the following, we’ll use a lot more computational power than we have so far.

74 / 100

Another global search III
For each of the starting points, we’ll first perform 100 IF2 iterations:

measSIR |>
mif2(params=guess, Np=2000, Nmif=100,

cooling.fraction.50=0.5,
partrans=parameter_trans(
log=c("Beta","Gamma"),
logit="Eta"), paramnames=c("Beta","Gamma","Eta"),

rw.sd=rw_sd(Beta=0.02,Gamma=0.02,Eta=ivp(0.02))) -> mf

We use random perturbations of the same magnitude as before, taking care to
transform the parameters we are estimating.

75 / 100

Another global search IV
We adopt a simulated tempering approach (following a metallurgical analogy), in
which we increase the size of the random perturbations some amount (i.e., “reheat”),
and then continue cooling.

mf |>
mif2(

Nmif=100,rw.sd=rw_sd(Beta=0.01,Gamma=0.01,Eta=ivp(0.01))
) |>
mif2(

Nmif=100,
rw.sd=rw_sd(Beta=0.005,Gamma=0.005,Eta=ivp(0.005))

) -> mf

76 / 100

Another global search V
We wrap the above in a foreach loop as before and take care to evaluate the
likelihood at each end-point using pfilter.
See the R code for this lesson to see exactly how this is done.
The computations above required 55.8 minutes on 10 processors.

read_csv("measles_params.csv") |>
filter(loglik>max(loglik)-20) -> all

pairs(~loglik+Rho+Gamma+Beta+Eta,data=all,pch=16,cex=0.3,
col=if_else(round(all$Rho,3)==0.6,1,4))

77 / 100

./main.R

Another global search VI

78 / 100

Another global search VII
results |>
filter(loglik>max(loglik)-20,loglik.se<1) |>
ggplot(aes(x=Gamma,y=loglik))+
geom_point()+
geom_hline(

color="red",
yintercept=max(results$loglik)-0.5*qchisq(df=1,p=0.95)

)

79 / 100

Another global search VIII

80 / 100

Profile over infectious period I
To make inferences about 𝛾, we can again compute a profile likelihood. As before, we
bound the region we will search:

read_csv("measles_params.csv") |>
filter(

loglik>max(loglik)-20,
loglik.se<2,
abs(Rho-0.6)<0.01

) |>
sapply(range) -> box

81 / 100

Profile over infectious period II
freeze(seed=610408798,
profile_design(

Gamma=seq(0.2,2,by=0.1),
lower=box[1,c("Beta","Eta")],
upper=box[2,c("Beta","Eta")],
nprof=100, type="runif"

)) |>
mutate(

N=38000,
Rho=0.6,
k=10

) -> guesses

82 / 100

Profile over infectious period III
foreach(guess=iter(guesses,"row"), .combine=rbind,
.options.future=list(seed=610408798)

) %dofuture% {
measSIR |>
mif2(params=guess, Np=2000, Nmif=100,

partrans=parameter_trans(log="Beta",logit="Eta"),
paramnames=c("Beta","Eta"), cooling.fraction.50=0.5,
rw.sd=rw_sd(Beta=0.02,Eta=ivp(0.02))

) |>
mif2(Nmif=100) |>
mif2(Nmif=100,rw.sd=rw_sd(Beta=0.01,Eta=ivp(0.01))) |>
mif2(Nmif=100,rw.sd=rw_sd(Beta=0.005,Eta=ivp(0.005))) -> mf

replicate(10,mf |> pfilter(Np=5000) |> logLik()) |>
logmeanexp(se=TRUE) -> ll

mf |> coef() |> bind_rows() |>
bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results
83 / 100

Infectious period profile I

results |>
group_by(round(Gamma,2)) |>
filter(rank(-loglik)<=1) |>
ungroup() |>
ggplot(aes(x=Gamma,y=loglik))+
geom_point() + xlab(expression(gamma)) +
geom_hline(

color="red",
yintercept=max(results$loglik)-0.5*qchisq(df=1,p=0.95)

)

84 / 100

Infectious period profile II

85 / 100

Infectious period profile III
▶ This suggests that 𝜌 = 0.6 is consistent only with smaller values of 𝛾, and hence

longer infectious periods than are possible if the duration of shedding is actually
less than one week.

▶ Thus the model is incapable of reconciling both an infectious period of less than
one week and a reporting rate of 60%.

▶ What structural changes to the model might we make to improve its ability to
explain the data?

86 / 100

Visualizing predictions I
After all these analyses, we would like to visualize how exactly the model with the
MLEs matches the data. We can do it by plotting the simulations with 95% the
prediction interval.

read_csv("measles_params.csv") |>
filter(loglik == max(loglik)) |>
select(-loglik, -loglik.se) -> best.params

measSIR |>
simulate(

params=unlist(best.params),
nsim=1000, format="data.frame", include.data=TRUE

) -> sims

87 / 100

Visualizing predictions II
sims |>
mutate(data=.id=="data") |>
group_by(week,data) |>
reframe(

p=c(0.025,0.5,0.975),
value=wquant(reports,probs=p),
name=c("lo","med","up")

) |>
select(-p) |> pivot_wider() |> ungroup() |>
ggplot(aes(x=week,y=med,color=data,fill=data,ymin=lo,ymax=up))+
geom_line()+ geom_ribbon(alpha=0.2,color=NA) +
labs(y="reports")+
theme_bw() + guides(color="none",fill="none")

88 / 100

Visualizing predictions III

89 / 100

Fitting the SEIR model I
In this exercise, you will estimate the parameters and likelihood of the SEIR model you
implemented in the earlier lessons by following the template above. Purely for the sake
of simplicity, you may assume that the values of 𝛾 and 𝑘 are known. To do this
efficiently, we will make use of a system of run-levels. At each run-level, we will select
some number of particles (Np), number of IF2 iterations (Nmif), and number of
starting guesses, to achieve a particular result.

1. First, conduct a local search and compute the likelihood at the end of each mif2
run, as shown above. Use only as many parallel mif2 computations as you have
processors on your computer (or perhaps somewhat fewer). Track the time used
and compute the amount of time used per cpu per IF2 iteration per 1000 particles.
(Recall that one particle filter computation is roughly equal to a IF2 iteration in
computational complexity if they both use the same number of particles.)

90 / 100

Fitting the SEIR model II
2. At run-level 1, we want a quick calculation that verifies that the codes are working

as expected. Using the expense estimates you generated in Step~(@ref(it:zero)),
choose a number of IF2 iterations so that you can do a very crude “global search”
that will complete in two or three minutes. Do not reduce Np drastically, as we
don‘t want to degrade the performance of the individual IF2 computations. Run
your global search with these settings. This serves to debug your global search
code.

3. At run-level 2, we want a computation that gives us some results we can begin to
interpret, but that is still as quick as possible. Choose Nmif and the number of
random starts so that you can obtain the beginnings of a global search of the
parameter space in one hour or less. Run your global search with these settings
and plot the results.

91 / 100

Fitting the SEIR model III
4. Run-level 3 is intended for final or near-final results. You may want to tune your

settings (Nmif, Np, rw.sd, cooling.fraction.50) at this point, based on what
you found at run-level 2. Decide how much time in the next 18 hours is available
to you for a computation. Choose the number of starting guesses so that you can
obtain as thorough a global search as possible within this period. Run your global
search and identify a maximum likelihood estimate.

5. How does the SEIR model compare with the SIR model? Discuss the overall
quality of the fit as well as important differences in how the two models are
explaining the data.

Worked solution to the Exercise

92 / 100

./Q_fit_seir.html

Fitting all parameters of the SIR model
In all of the foregoing, we have assumed a fixed value of the dispersion parameter, 𝑘,
of the negative binomial measurement model. We’ve also fixed one or the other of 𝛾,
𝜂. Now attempt to estimate all the parameters simultaneously. To accomplish this, use
the same system of run-levels as in the previous Exercise.
How much is the fit improved? How has the model’s explanation of the data changed?

Worked solution to the Exercise

93 / 100

./Q_fit_all.html

Construct a profile likelihood
How strong is the evidence about the contact rate, 𝛽, given this model and data? Use
mif2 to construct a profile likelihood. Due to time constraints, you may be able to
compute only a preliminary version.
It is also possible to profile over the basic reproduction number, 𝑅0 = 𝛽/𝛾. Is this
more or less well determined than 𝛽 for this model and data?

94 / 100

Checking the source code I
Check the source code for the measSIR pomp object, using the spy command.

1. Does the code implement the model described?
It can be surprisingly hard to make sure that the written equations and the code are
perfectly matched. Papers should be written to be readable, and therefore people
rarely choose to clutter papers with numerical details which they hope and believe are
scientifically irrelevant.

2. What problems can arise due to the conflict between readability and
reproducibility?

3. What solutions are available?
Worked solution to the Exercise

95 / 100

./Q_check_code.html

Beware errors in rprocess
Suppose that there is an error in the coding of rprocess and suppose that
plug-and-play statistical methodology is used to infer parameters. As a conscientious
researcher, you carry out a simulation study to check the soundness of your inference
methodology on this model. To do this, you use simulate to generate realizations
from the fitted model and you check that your parameter inference procedure recovers
the known parameters, up to some statistical error.

1. Will this procedure help to identify the error in rprocess?
2. If not, how might you debug rprocess?
3. What research practices help minimize the risk of errors in simulation code?

Worked solution to the Exercise

96 / 100

./Q_error_in_rprocess.html

Choosing the algorithmic settings for IF2
Have a look at our advice on tuning IF2. An exercise at the end of the linked
document invites you to test this advice on the Consett measles example.

97 / 100

./if2_settings.html

References I
Anderson, R. M., and R. M. May. 1991. Infectious Diseases of Humans. Oxford:

Oxford Univesity Press.
Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010. “Particle Markov

Chain Monte Carlo Methods.” J R Stat Soc B 72 (3): 269–342.
https://doi.org/10.1111/j.1467-9868.2009.00736.x.

He, Daihai, Edward L. Ionides, and Aaron A. King. 2010. “Plug-and-Play Inference for
Disease Dynamics: Measles in Large and Small Populations as a Case Study.” J R
Soc Interface 7 (June): 271–83. https://doi.org/10.1098/rsif.2009.0151.

Ionides, E. L., C. Bretó, and Aaron A. King. 2006. “Inference for Nonlinear Dynamical
Systems.” Proc Natl Acad Sci 103 (49): 18438–43.
https://doi.org/10.1073/pnas.0603181103.

98 / 100

https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1098/rsif.2009.0151
https://doi.org/10.1073/pnas.0603181103

References II
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A. King.

2015. “Inference for Dynamic and Latent Variable Models via Iterated, Perturbed
Bayes Maps.” Proc Natl Acad Sci 112 (3): 719–24.
https://doi.org/10.1073/pnas.1410597112.

King, Aaron A., Dao Nguyen, and Edward L. Ionides. 2016. “Statistical Inference for
Partially Observed Markov Processes via the R Package Pomp.” J Stat Softw 69
(12): 1–43. https://doi.org/10.18637/jss.v069.i12.

Shrestha, Sourya, Aaron A. King, and Pejman Rohani. 2011. “Statistical Inference for
Multi-Pathogen Systems.” PLoS Comput Biol 7 (8): e1002135.
https://doi.org/10.1371/journal.pcbi.1002135.

Toni, Tina, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael P. H. Stumpf.
2009. “Approximate Bayesian Computation Scheme for Parameter Inference and
Model Selection in Dynamical Systems.” J R Soc Interface 6 (31): 187–202.
https://doi.org/10.1098/rsif.2008.0172.

99 / 100

https://doi.org/10.1073/pnas.1410597112
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.1371/journal.pcbi.1002135
https://doi.org/10.1098/rsif.2008.0172

License, acknowledgments, and links
▶ This lesson is prepared for the Simulation-based Inference for Epidemiological

Dynamics module at the Summer Institute in Statistics and Modeling in Infectious
Diseases, SISMID.

▶ The materials build on previous versions of this course and related courses.
▶ Licensed under the Creative Commons Attribution-NonCommercial license. Please

share and remix non-commercially, mentioning its origin.
▶ Produced with R version 4.3.2 and pomp version 5.10.
▶ Compiled on 2024-07-24.

Back to Lesson
R code for this lesson

100 / 100

https://rubbislam.quarto.pub/episim/
https://rubbislam.quarto.pub/episim/
https://sph.emory.edu/SISMID/index.html
../acknowledge.html
https://creativecommons.org/licenses/by-nc/4.0/
index.html
./main.R

	Introduction
	Classification of statistical methods for POMP models
	The plug-and-play property
	Full information vs.~feature-based methods
	Bayesian vs.~frequentist approaches
	Iterated filtering in theory
	Iterated filtering in practice
	An example problem
	Setting up the estimation problem
	A local search of the likelihood surface
	Searching for the MLE
	A global search
	Profile likelihood
	Making predictions
	Searching in another direction
	Exercises
	References

