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Course objectives
1. Demonstrate the utility of partially observed markov processes (POMP) for

epidemiological and ecological modeling
2. Provide theoretical underpinnings of statistical inference of POMP models
3. Outline the process of formulating models and coding them in the pomp R package
4. Provide hands on experience working with such models and inference methods
5. Highlight research case studies and examples that can be adapted and re-used for

future work
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Objectives for this lesson
▶ To understand the motivations for simulation-based inference in the study of

epidemiological and ecological systems.
▶ To introduce the class of partially observed Markov process (POMP) models.
▶ To introduce the pomp R package.
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Why is ecological and epidemiological inference difficult?

▶ Ecological systems are complex, open, nonlinear, nonstationary, and multi-scalar
▶ We don’t fully know the “Laws of Nature” governing the system
▶ Limited data and many unobserved aspects
▶ Multiple ways to explain available data

▶ Remember herd immunity debate for COVID-19?
▶ Does wearing face coverings reduce transmission?

https://link.springer.com/article/10.1007/s40139-020-00213-x
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In 2022, Mpox was growing rapidly in the United States
Example questions public health officials
had:

1. What is the reproduction number of
the virus?

2. What will case counts be over the next
4 weeks?

3. How would vaccination campaigns
alter the progression of the epidemic?
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We need to understand the data generating process (DGP) - what is
driving the observed Mpox case counts?
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Ecological/Epidemiological DGPs
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Partially observed Markov process (POMP) models
▶ A model where observations (data) are dependent and/or generated by a latent

(hidden) Markov model
▶ A Markov model is a stochastic (described by probability distribution) model of a

system that assumes that future states depend only on the current state, not on
the events that occurred before it

▶ POMPs are also known as hidden Markov models or state space models
▶ Data collected at each time step are modeled as noisy, incomplete, and indirect

observations of a Markov process
▶ POMP models can address the ecological/epidemiological inference issues
▶ Any system of differential equations 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) is Markovian
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Time-based POMP model schematic

12 / 44



How do these apply for the Mpox example?

▶ Process model could be an epidemiological model (e.g. SEIR ODE)
▶ Measurement model would be how observations are generated probabilistically

(e.g. some fraction of infections are randomly reported)
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Three goals for models
1. Inference - learn about the current or historic variables governing the system

▶ What is the reproduction number of the virus?
2. Forecast - predict the values of the future states or observations (usually

observations)
▶ What will case counts be over the next 4 weeks?

3. Scenario Projections - predict the values of future states or observations under
pre-specified scenarios

▶ How would vaccination campaigns alter the progression of the epidemic?
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Why are POMPs important for answering these questions?
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The 2014-2015 Ebola epidemic was devastating (>28k cases and >11k
deaths)
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First time models and predictions were highly visible in real-time during an
epidemic/pandemic

Meltzer et al 2014
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King et al set out to show the impact of common modeling errors
1. Using cumulative data
2. Using a deterministic rather than stochastic process model
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Using cumulative (or accumulated) data break assumptions in statistical
models regarding the independence of observations

▶ 𝑌𝑖 assumed to be independent conditioned upon the 𝑋𝑖
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Accumulated data leads to incorrect parameter estimates

▶ (a) 𝑅0 estimates similar between data types
▶ (b) the measurement dispersion parameter incorrect for accumulated counts
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Accumulated data leads to overconfidence in parameter estimates

▶ (c) 𝑅0 confidence intervals narrower when using accumulated data
▶ (d) the coverage is lower with accumulated data

▶ Why is nominal coverage still below expected 99%
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Using a deterministic model assigns all discrepancies between model
prediction and observations to the measurement model
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The two “errors” trickle into overconfidence in forecasting and projections
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What is recommended?
▶ Fit stochastic models to incidence data
▶ POMPs, pomp, and simulated inference are one of the few ways to do so
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Recent pomp examples
1. Quantifying asymptomatic COVID-19 infections (Subramanian, He, and Pascual

2021)
2. Estimating the effectiveness of non-pharmaceutical interventions for controlling

SARS-CoV-2 spread (Shirreff et al. 2022)
3. Using human mobility data to infer epidemiological parameters (Andrade and

Duggan 2022)
4. Using mobility data to forecast COVID-19 burden (Fox et al. 2022)
5. Identifying effective strategies to contain mumps spread (Shah et al. 2022)
6. Explaining the resurgence of pertussis (Domenech de Cellès et al. 2018)
7. Explaining strain dynamics in enteroviruses (Pons-Salort and Grassly 2018)
8. Contributions of population heterogeneity to HIV epidemic (Romero-Severson et

al. 2015)
9. Estimating the role that adults play in polio transmission (Blake et al. 2014)

10. Relating hydrology to cholera dynamics (Baracchini et al. 2017)
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Partially observed Markov process (POMP) models
▶ Data 𝑦∗

1, … , 𝑦∗
𝑁 collected at times 𝑡1 < ⋯ < 𝑡𝑁 are modeled as noisy, incomplete,

and indirect observations of a Markov process {𝑋(𝑡), 𝑡 ≥ 𝑡0}.
▶ This is a partially observed Markov process (POMP) model, also known as a

hidden Markov model or a state space model.
▶ {𝑋(𝑡)} is Markov if the history of the process, {𝑋(𝑠), 𝑠 ≤ 𝑡}, is uninformative

about the future of the process, {𝑋(𝑠), 𝑠 ≥ 𝑡}, given the current value of the
process, 𝑋(𝑡).

▶ If all quantities important for the dynamics of the system are placed in the state,
𝑋(𝑡), then the Markov property holds by construction.

▶ Systems with delays can usually be rewritten as Markovian systems, at least
approximately.

▶ An important special case: any system of differential equations 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) is
Markovian.

▶ POMP models can include all the features desired by Bjørnstad and Grenfell
(2001).
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Schematic of the structure of a POMP
▶ Arrows in the following diagram show causal relations.
▶ A key perspective to keep in mind is that the model is to be viewed as the process

that generated the data.
▶ That is: the data are viewed as one realization of the model’s stochastic process.
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Notation for POMP models
▶ Write 𝑋𝑛 = 𝑋(𝑡𝑛) and 𝑋0∶𝑁 = (𝑋0, … , 𝑋𝑁). Let 𝑌𝑛 be a random variable

modeling the observation at time 𝑡𝑛.
▶ The one-step transition density, 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑥𝑛−1; 𝜃), together with the
measurement density, 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃) and the initial density, 𝑓𝑋0
(𝑥0; 𝜃), specify

the entire POMP model.
▶ The joint density 𝑓𝑋0∶𝑁,𝑌1∶𝑁

(𝑥0∶𝑁 , 𝑦1∶𝑁 ; 𝜃) can be written as

𝑓𝑋0
(𝑥0; 𝜃)

𝑁
∏
𝑛=1

𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃) 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃)

▶ The marginal density for 𝑌1∶𝑁 evaluated at the data, 𝑦∗
1∶𝑁 , is

𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃) = ∫ 𝑓𝑋0∶𝑁,𝑌1∶𝑁
(𝑥0∶𝑁 , 𝑦∗

1∶𝑁 ; 𝜃) 𝑑𝑥0∶𝑁
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Another POMP model schematic

▶ The state process, 𝑋𝑛, is Markovian, i.e.,

𝑓𝑋𝑛|𝑋0∶𝑛−1,𝑌1∶𝑛−1
(𝑥𝑛|𝑥0∶𝑛−1, 𝑦1∶𝑛−1) = 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑥𝑛−1).

▶ Moreover, 𝑌𝑛, depends only on the state at that time:

𝑓𝑌𝑛|𝑋0∶𝑁,𝑌1∶𝑛−1
(𝑦𝑛|𝑥0∶𝑛, 𝑦1∶𝑛−1) = 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛), for 𝑛 = 1, … , 𝑁.
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Moving from math to algorithms for POMP models
We specify some basic model components which can be used within algorithms:

▶ rprocess: a draw from 𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃)

▶ dprocess: evaluation of 𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃)

▶ rmeasure: a draw from 𝑓𝑌𝑛|𝑋𝑛
(𝑦𝑛|𝑥𝑛; 𝜃)

▶ dmeasure: evaluation of 𝑓𝑌𝑛|𝑋𝑛
(𝑦𝑛|𝑥𝑛; 𝜃)

▶ rinit: a draw from 𝑓𝑋0
(𝑥0; 𝜃)

These basic model components define the specific POMP model under consideration.
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What is a simulation-based method?
▶ Simulating random processes is often much easier than evaluating their transition

probabilities.
▶ In other words, we may be able to write rprocess but not dprocess.
▶ Simulation-based methods require the user to specify rprocess but not dprocess.
▶ Plug-and-play, likelihood-free and equation-free are alternative terms for

“simulation-based” methods.
▶ Much development of simulation-based statistical methodology has occurred in

the past decade.
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The pomp package for POMP models
▶ pomp is an R package for data analysis using partially observed Markov process

(POMP) models (King, Nguyen, and Ionides 2016).
▶ Note the distinction: lower case pomp is a software package; upper case POMP is

a class of models.
▶ pomp builds methodology for POMP models in terms of arbitrary user-specified

POMP models.
▶ pomp provides tools, documentation, and examples to help users specify POMP

models.
▶ pomp provides a platform for modification and sharing of models, data-analysis

workflows, and methodological development.
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Structure of the pomp package
It is useful to divide the pomp package functionality into different levels:

▶ Basic model components
▶ Workhorses
▶ Elementary POMP algorithms
▶ Inference algorithms
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Basic model components
Basic model components are user-specified procedures that perform the elementary
computations that specify a POMP model. There are nine of these:

▶ rinit: simulator for the initial-state distribution, i.e., the distribution of the
latent state at time 𝑡0.

▶ rprocess and dprocess: simulator and density evaluation procedure,
respectively, for the process model.

▶ rmeasure and dmeasure: simulator and density evaluation procedure,
respectively, for the measurement model.

▶ rprior and dprior: simulator and density evaluation procedure, respectively, for
the prior distribution.

▶ skeleton: evaluation of a deterministic skeleton.
▶ partrans: parameter transformations.

The scientist must specify whichever of these basic model components are required for
the algorithms that the scientist uses.
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Workhorses
Workhorses are R functions, built into the package, that cause the basic model
component procedures to be executed.

▶ Each basic model component has a corresponding workhorse.
▶ Effectively, the workhorse is a vectorized wrapper around the basic model

component.
▶ For example, the rprocess() function uses code specified by the rprocess model

component, constructed via the rprocess argument to pomp().
▶ The rprocess model component specifies how a single trajectory evolves at a single

moment of time. The rprocess() workhorse combines these computations for
arbitrary collections of times and arbitrary numbers of replications.
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Elementary POMP algorithms
These are algorithms that interrogate the model or the model/data confrontation
without attempting to estimate parameters. There are currently four of these:

▶ simulate performs simulations of the POMP model, i.e., it samples from the
joint distribution of latent states and observables.

▶ pfilter runs a sequential Monte Carlo (particle filter) algorithm to compute the
likelihood and (optionally) estimate the prediction and filtering distributions of the
latent state process.

▶ probe computes one or more uni- or multi-variate summary statistics on both
actual and simulated data.

▶ spect estimates the power spectral density functions for the actual and simulated
data.
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POMP inference algorithms I
These are procedures that build on the elementary algorithms and are used for
estimation of parameters and other inferential tasks. There are currently ten of these:

▶ abc: approximate Bayesian computation
▶ bsmc2: Liu-West algorithm for Bayesian SMC
▶ pmcmc: a particle MCMC algorithm
▶ mif2: iterated filtering (IF2)
▶ enkf, eakf ensemble and ensemble adjusted Kalman filters
▶ traj_objfun: trajectory matching
▶ spect_objfun: power spectrum matching
▶ probe_objfun: probe matching
▶ nlf_objfun: nonlinear forecasting
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POMP inference algorithms II
Objective function methods: among the estimation algorithms just listed, four are
methods that construct stateful objective functions that can be optimized using
general-purpose numerical optimization algorithms such as optim, subplex, or the
optimizers in the nloptr package.
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Activity: how do stochastic and deterministic models differ?
▶ Navigate to: https://spncrfx.shinyapps.io/stochastic-sir/
▶ Read introduction, play with parameters to understand what factors impact

concordance between stochastic and deterministic models
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License, acknowledgments, and links
▶ This lesson is prepared for the Simulation-based Inference for Epidemiological

Dynamics module at the Summer Institute in Statistics and Modeling in Infectious
Diseases, SISMID.

▶ The materials build on previous versions of this course and related courses.
▶ Licensed under the Creative Commons Attribution-NonCommercial license. Please

share and remix non-commercially, mentioning its origin.
▶ Produced with R version 4.4.0 and pomp version 5.9.
▶ Compiled on 2024-07-24.

Back to Lesson
R code for this lesson
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../acknowledge.html
https://creativecommons.org/licenses/by-nc/4.0/
index.html
./main.R
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