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Lecture outline

Motivating Bayesian statistics

Short introduction to Bayesian statistics and theory
Introduction to MCMC

Introduction to PMCMC

Simple influenza case study
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What we have covered so far

p(y|0)

P y can be thought of as your data or observations
P 0 can be thought of as the model or parameter values

P Called the “Likelihood”



Issues with maximum likelihood estimation (MLE)

P> Assumes results occur with some given “frequency” over period time or
replicates/repeated experiments
P If we had the same outbreak hundreds of time, what proportion of them would
provide confidence intervals that contain the true value for the R
P> Some difficulties in constraining parameter values based on outside data,
information, or expert opinion
P Just not really intuitive...
P We typically want to say something about the parameters based on the data, p(6y)



Bayesian statistics

>
>

Bayes theorem provides an intuitive framework to update parameter estimates
based on both prior knowledge and experimental data

End result is a posterior distribution, p(f|y), directly describing the parameter and
model of interest

Easy to communicate results

P “The reproduction number is estimated to be x, with a 95% credible interval from y
to z"
Issues
P Computationally expensive
P Without enough data, prior can bias posterior distribution, but this is what you want!



Bayes theorem 1

p(y|0)p(0)

p(fly) = (1)

O|y) is the posterior distribution
0) is the likelihood

p(
p(y
p(0) is the prior distribution
p(y
0

>
>
>
P p(y) is the marginal distribution (sometimes called a

normalizing constant as it doesn't depend on the parameters)



Bayes theorem 2

p(y|0)p(0)
p(y)

p(fly) =

p(y) = [ p(y|0)p(6)do

Probablllty of observing y marginal over all possible values of 6
Typically is very difficult to calculate

The good news is that p(y) is a constant

>
>
>
>



Bayes theorem 3

p(Bly) o p(y|0)p(0)

P Since p(y) is a constant, the posterior distribution is proportional to the
likelihood times the prior

P> If we can solve this we can get the posterior distribution because
[ p(0ly)do = 1

P> Intuitively our parameter estimates are based on a combination of our
observations p(y|6) and our prior beliefs p(6)

P Only need to sample from the likelihood and prior distribution to get the
posterior



How do we do so?

P Many ways to do so (and many software packages), but we're
only going to talk about one..

P Markov chain Monte Carlo (MCMC) is a class of algorithms
used to draw samples from a probability distribution

P Will not cover the theoretical details, but will attempt to
motivate



Assume you have an unknown probability distribution (hill) to explore...
How would you do so?

P You don’t know where it is in parameter space
P You don't know it's shape



MCMC Robot Rules

. Drastic “off the cliff”
downhill steps are almost

2 Slightly downhill steps
- . never accepted

are usually accepted .

’
’

With these rules, it
is easy to see why the
robot tends to stay near

the tops of hills

1 Uphill steps are
" always accepted

Paul O. Lewis (2014 Woods Hole Molecular Evolution Workshop)



MCMC Robot Rules (actual) |

10+
Drastic “off the cliff”
downhill steps are almost
8+ never accepted because
R is near 0
6T Currently at 6.2 m
Proposed at 0.2 m
R=0.2/6.2=0.03
4 -,
o4
0+ The robot steps with )

probability equal to R (or 1)

Paul O. Lewis (2014 Woods Hole Molecular Evolution Workshop)



MCMC Robot Rules (actual) Il

101
Drastic “off the cliff”
downhill steps are almost
8+ never accepted because
Ris near 0
6T Currently at 6.2 m
Proposed at 0.2 m
. |R=0.2/6.2=0.03
4T \\
Currently at 1.0 m \\
Proposed at 2.3 m '
o4 R=2.3/1.0=2.3 *
Uphill steps are r

0+ always accepted The robot steps with
becase®>1 probability equal to R (or 1)

Paul O. Lewis (2014 Woods Hole Molecular Evolution Workshop)



MCMC Robot Rules (actual) Ill

101

8..

Slightly downhill steps
are usually accepted
because R is near 1

Currently at 6.2 m
Proposed at 5.7 m
R=5.7/6.2 =0.92

Currently at 1.0 m
Proposed at 2.3 m
R=2.3/1.0=2.3

Uphill steps are
always accepted
because R > 1

The robot steps with
probability equal to R (or 1)

Paul O. Lewis (2014 Woods Hole Molecular Evolution Workshop)

Drastic “off the cliff”

downbhill steps are almost

never accepted because
R is near 0

Currently at 6.2 m
. Proposed at 0.2 m
. |R=0.2/6.2=0.03




MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) |




MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) 1l
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MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) V

Settings Stats.



Steps for Metropolis-Hastings MCMC

BN

Choose a reasonable starting place for parameters (6)

Propose new parameter values (6)

Calculate the proposal probability o

Accept (change parameters to 6”) or reject (keep parameters at 6) with
probability «

Repeat steps 2-5 for as many MCMC iterations as desired



Steps for Metropolis-Hastings MCMC

Choose a reasonable starting place for parameters (6)

Propose new parameter values (6)

Calculate the proposal probability o

Accept (change parameters to 6’) or reject (keep parameters at )
Repeat steps 2-5 for as many MCMC iterations as desired

Where

oW

a = min(1, p)

and

_p@'ly) GO[")

p(ly)  G(6'10)




p equals the ratio of posterior distributions multiplied by the proposal
probability ratio

L _p(lly) Gl9)
p(Bly) G(0']6)

GO0) _ 1

G(o'10) —

P> Notice that the posterior denominators from before (p(y)) cancel each other
out in this ratio

P For symmetric proposal distributions (random walks)

N



We can simplify the acceptance probability significantly

_ pylf)p(6)
p(y|0)p(0)

P Only depends on the likelihood and prior probabilities




Prior parameter distributions

P> Prior distributions assign probabilities to specific parameter
values and are created separately for every parameter

P Other than strict constraints, we expect the data and likelihood
to drive the posterior distribution, but always good idea to check
the impact the prior distributions have in a sensitivity analysis



Three main types of prior distributions

1. Informative priors craft a distribution based on previous

scientific studies
P Typically only used if a specific quantity is well known from outside data (e.g. the
infection fatality rate or infectious period)

2. Weakly informative priors craft a distribution with reasonable

constraints
P Used for regularization (e.g. to “suggest” that a parameter is most likely to be
positive)

3. Uninformative (flat priors) assign equal probabilities across a

range of plausible values
P> Can constrain parameters to be strictly positive or in biologically/epidemiologically
relevant range
P Not always “uninformative”



Questions about MCMC?



PMCMC

p(y|0)p(6)

P Standard MCMC algorithm assumes a deterministic likelihood
P When process stochasticisty is included we use the particle filter to obtain
likelihood
P> Particle filter (Sequential Monte Carlo procedure) approximates p(y|6), but
with variability
P Can complicate things a bit, but usually not an issue



Further PMCMC resources

P For an awesome field-specific explanation
P Introduction to particle Markov-chain Monte Carlo for disease dynamics modellers
P For some considerations with modeling and inference
P Choices and trade-offs in inference with infectious disease models
P> For an example of how it has been used in recent epidemiological literature
P> Estimating SARS-CoV-2 transmission parameters between coinciding outbreaks in a
university population and the surrounding community
P For working with pmcmc in the pomp package
P Getting started with pomp


https://doi.org/10.1016/j.epidem.2019.100363
https://www.sciencedirect.com/science/article/pii/S1755436519300441
https://www.medrxiv.org/content/10.1101/2024.01.10.24301116v1
https://www.medrxiv.org/content/10.1101/2024.01.10.24301116v1
https://kingaa.github.io/pomp/vignettes/getting_started.html#Sampling_the_posterior_using_particle_Markov_chain_Monte_Carlo

Considerations for moving from mif2 to pmcmc in pomp

1. Specify the prior distributions for all parameters
2. Use the pmcmc () function
3. Use MCMC diagnostics to check convergence, etc.



Influenza boarding school example

P> 1978 influenza epidemic in boarding school that infected much of the school
P Data are actually kids in beds, but we are assuming it's new infections

300

200

1004

day



Modeling as an SIR model with reporting of new infections




Modeling as an SIR model with reporting of new infections

rproc <- Csnippet ("
double N = 2000;
double t1 = rbinom(S,1-exp(-Beta*I/N*dt));
double t2 = rbinom(I,l-exp(-mu_I*dt));
S -= t1;
I +=t1 - t2;
NI += t1;
R += t2;
ll)

rmeas <- Csnippet ("
B = rpois(rho*NI+1le-6);
ll)



Specifying the prior distribution

priorDens <- Csnippet ("
lik = dunif (Beta, 1, 4, 1) +
dunif(mu_I, 0.5, 3, 1) +
dunif (rho, 0.5, 1, 1);
if (!give_log) lik = exp(lik);
")

P> Add the densities (probabilities) for each parameter value independently
P Include the same log functionality used before
P> We are specifying a plausible range of values for each parameter here



Running an MCMC chain

flu |> ## Standard pomp object that has already been created
pomp(dprior = priorDens, ## Prior specified from previous slide
params = sim_params, ## Parameter starting point
paramnames=c("Beta","mu_I","rho")) |> ## Parameter names
pmcmc (Nmeme = 10000, ## Number of MCMC iterations
Np = 200, ## Number of particles to use
proposal = mvn_diag rw(rw.sd = c(Beta=0.3, mu_I=0.3, rho=0.1))
) -> test_mcmc



Proposal distributions in pomp

P mvn_diag rw(rw.sd) - you provide the standard deviations for
the proposals for each parameter

P mvn_rw(rw.var) - you provide the variance/covariance matrix
for proposals

P mvn_rw_adaptive() - you provide either of the above and it

attempts to automatically “tune” parameters to achieve good
MCMC mixing



Typically you need to test different values initially

flu |> ## Standard pomp object that has already been created
pomp(dprior = priorDens, ## Prior specified from previous slide
params = sim_params, ## Parameter starting point
paramnames=c("Beta","mu_I","rho")) |> ## Parameter names
pmcmc (Nmeme = 10000, ## Number of MCMC iterations
Np = 200, ## Number of particles to use
proposal = mvn_diag rw(rw.sd = c(Beta=0.3, mu_I=0.3, rho=0.1))
) -> test_mcmc



Diagnosing chain mixing

value

Beta loglik
.58 4
241
.60 4
211
_62 4
181 -64 1
1.5 1
mu_| rho
1.6 1.00
0.951
1.2
0.90
0.8
0.85-
0 2500 5000 7500 10000 0 2500 5000 7500 10000

iteration



Diagnosing chain mixing - autocorrelation
library(coda)
test_mcmc |>

traces() |[|>
autocorr.diag(lags=c(10, 50, 100))

loglik log.prior Beta mu_I rho
Lag 10 0.8603731 NaN 0.8845398 0.8810328 0.8023407
Lag 50 0.5396487 NaN 0.5445343 0.5645781 0.3971658
Lag 100 0.3494610 NaN 0.3271410 0.3358897 0.2386606
mu_R1
Lag 10 0.9990001
Lag 50 0.9950005
Lag 100 0.9900010



Second step often uses the empirical covariance matrix for proposals to
improve mixing
flu |>
pomp(dprior = priorDens,
params = sim_params, ##Using the sim params as a starting spot
paramnames=c ("Beta","mu_I","rho")) [>
pmcme (Nmeme = 10000,
Np = 200,

proposal = mvn_rw(covmat(test_mcmc, thin = 50))
) —> test_mcmc2



Improved trace plots!

value
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Improved autocorrelation!

test_mcmc2 |>
traces() [|>
autocorr.diag(lags=c(10, 50, 100))

loglik log.prior Beta mu_I

Lag 10 0.37014612 NaN 0.309750841 0.32244825

Lag 50 0.02823492 NaN -0.057939058 -0.03009082

Lag 100 0.01502889 NaN -0.005065156 -0.02058864
rho mu_R1

Lag 10 0.30978973 0.9990001
Lag 50 -0.01285783 0.9950005
Lag 100 -0.02784212 0.9900010



Estimating posterior distributions

1.

Once you are happy with the mixing of your pmcmc you are ready to do a run
for estimating posteriors

. First randomly choose 3-5 starting parameter values (example uses

Latin-hypercube sampling)

Run (in parallel or not depending on computational time) a chain intialized
with each

Diagnose chain mixing with trace plots and Gelman-Rubin convergence
diagnostic

Remove the burn-in period and thin based on diagnostics

Summarize parameter posterior distributions and credible intervals



Summary process for PMCMC in pomp

1. Create pomp object exactly as normal

2. Create the prior distributions for parameters

3. Run an initial pmcmc with mvn_diag _rw proposal to make sure it's working
and diagnose

4. Randomly sample 3-5 parameter starting conditions

5. Run a PMCMC chain with mvn_rw() proposal and the variance/covariance
matrix from the first run for each of the initial parameter combinations

6. Diagnose mixing and convergence (alter components as needed)

7. Summarize parameters



Activity: how do stochastic and deterministic models differ?

1. Go to https://plewis.github.io/applets/mcmc-robot/, and play
with different MCMC parameters and variations

2. Download the exercise code for the influenza boarding school
example and test the impact of the following on mixing and

traceplots:
P> Different parameters for the proposal distribution
P> Different starting parameter values
P Different number of particles



License, acknowledgments, and links

P> This lesson is prepared for the Simulation-based Inference for Epidemiological

Dynamics module at the Summer Institute in Statistics and Modeling in Infectious
Diseases, SISMID.

P> The materials build on previous versions of this course and related courses.

P Licensed under the Creative Commons Attribution-NonCommercial license. Please
share and remix non-commercially, mentioning its origin. ©

P Produced with R version 4.4.0 and pomp version 5.9.
P Compiled on 2024-07-24.

Back to Lesson

R code for this lesson


https://rubbislam.quarto.pub/episim/
https://rubbislam.quarto.pub/episim/
https://sph.emory.edu/SISMID/index.html
../acknowledge.html
https://creativecommons.org/licenses/by-nc/4.0/
index.html
./main.R

