
Bayesian statistics and pomp

Qianying (Ruby) Lin Spencer J. Fox Zian (Larry) Zhuang

Lecture outline
1. Motivating Bayesian statistics
2. Short introduction to Bayesian statistics and theory
3. Introduction to MCMC
4. Introduction to PMCMC
5. Simple influenza case study

What we have covered so far

𝑝(𝑦|𝜃)
▶ 𝑦 can be thought of as your data or observations
▶ 𝜃 can be thought of as the model or parameter values
▶ Called the “Likelihood”

Issues with maximum likelihood estimation (MLE)
▶ Assumes results occur with some given “frequency” over period time or

replicates/repeated experiments
▶ If we had the same outbreak hundreds of time, what proportion of them would

provide confidence intervals that contain the true value for the 𝑅0
▶ Some difficulties in constraining parameter values based on outside data,

information, or expert opinion
▶ Just not really intuitive…

▶ We typically want to say something about the parameters based on the data, 𝑝(𝜃|𝑦)

Bayesian statistics
▶ Bayes theorem provides an intuitive framework to update parameter estimates

based on both prior knowledge and experimental data
▶ End result is a posterior distribution, 𝑝(𝜃|𝑦), directly describing the parameter and

model of interest
▶ Easy to communicate results

▶ “The reproduction number is estimated to be x, with a 95% credible interval from y
to z”

▶ Issues
▶ Computationally expensive
▶ Without enough data, prior can bias posterior distribution, but this is what you want!

Bayes theorem 1

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

▶ 𝑝(𝜃|𝑦) is the posterior distribution
▶ 𝑝(𝑦|𝜃) is the likelihood
▶ 𝑝(𝜃) is the prior distribution
▶ 𝑝(𝑦) is the marginal distribution (sometimes called a

normalizing constant as it doesn’t depend on the parameters)

Bayes theorem 2

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

▶ 𝑝(𝑦) = ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃
▶ Probability of observing 𝑦 marginal over all possible values of 𝜃
▶ Typically is very difficult to calculate
▶ The good news is that 𝑝(𝑦) is a constant

Bayes theorem 3

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)
▶ Since 𝑝(𝑦) is a constant, the posterior distribution is proportional to the

likelihood times the prior
▶ If we can solve this we can get the posterior distribution because

∫ 𝑝(𝜃|𝑦)𝑑𝜃 = 1
▶ Intuitively our parameter estimates are based on a combination of our

observations 𝑝(𝑦|𝜃) and our prior beliefs 𝑝(𝜃)
▶ Only need to sample from the likelihood and prior distribution to get the

posterior

How do we do so?
▶ Many ways to do so (and many software packages), but we’re

only going to talk about one…
▶ Markov chain Monte Carlo (MCMC) is a class of algorithms

used to draw samples from a probability distribution
▶ Will not cover the theoretical details, but will attempt to

motivate

Assume you have an unknown probability distribution (hill) to explore…
How would you do so?

▶ You don’t know where it is in parameter space
▶ You don’t know it’s shape

MCMC Robot Rules

MCMC Robot Rules (actual) I

MCMC Robot Rules (actual) II

MCMC Robot Rules (actual) III

MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) I

MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) II

MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) III

MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) IV

MCMC Demonstration (https://plewis.github.io/applets/mcmc-robot/) V

Steps for Metropolis-Hastings MCMC
1. Choose a reasonable starting place for parameters (𝜃)
2. Propose new parameter values (𝜃′)
3. Calculate the proposal probability 𝛼
4. Accept (change parameters to 𝜃′) or reject (keep parameters at 𝜃) with

probability 𝛼
5. Repeat steps 2-5 for as many MCMC iterations as desired

Steps for Metropolis-Hastings MCMC
1. Choose a reasonable starting place for parameters (𝜃)
2. Propose new parameter values (𝜃′)
3. Calculate the proposal probability 𝛼
4. Accept (change parameters to 𝜃′) or reject (keep parameters at 𝜃)
5. Repeat steps 2-5 for as many MCMC iterations as desired

Where
𝛼 = min(1, 𝜌)

and
𝜌 = 𝑝(𝜃′|𝑦)

𝑝(𝜃|𝑦) ⋅ 𝐺(𝜃|𝜃′)
𝐺(𝜃′|𝜃)

𝜌 equals the ratio of posterior distributions multiplied by the proposal
probability ratio

𝜌 = 𝑝(𝜃′|𝑦)
𝑝(𝜃|𝑦) ⋅ 𝐺(𝜃|𝜃′)

𝐺(𝜃′|𝜃)
▶ For symmetric proposal distributions (random walks) 𝐺(𝜃|𝜃′)

𝐺(𝜃′|𝜃) = 1
▶ Notice that the posterior denominators from before (𝑝(𝑦)) cancel each other

out in this ratio

We can simplify the acceptance probability significantly

𝜌 = 𝑝(𝑦|𝜃′)𝑝(𝜃′)
𝑝(𝑦|𝜃)𝑝(𝜃)

▶ Only depends on the likelihood and prior probabilities

Prior parameter distributions
▶ Prior distributions assign probabilities to specific parameter

values and are created separately for every parameter
▶ Other than strict constraints, we expect the data and likelihood

to drive the posterior distribution, but always good idea to check
the impact the prior distributions have in a sensitivity analysis

Three main types of prior distributions
1. Informative priors craft a distribution based on previous

scientific studies
▶ Typically only used if a specific quantity is well known from outside data (e.g. the

infection fatality rate or infectious period)
2. Weakly informative priors craft a distribution with reasonable

constraints
▶ Used for regularization (e.g. to “suggest” that a parameter is most likely to be

positive)
3. Uninformative (flat priors) assign equal probabilities across a

range of plausible values
▶ Can constrain parameters to be strictly positive or in biologically/epidemiologically

relevant range
▶ Not always “uninformative”

Questions about MCMC?

PMCMC

𝑝(𝑦|𝜃)𝑝(𝜃)
▶ Standard MCMC algorithm assumes a deterministic likelihood
▶ When process stochasticisty is included we use the particle filter to obtain

likelihood
▶ Particle filter (Sequential Monte Carlo procedure) approximates 𝑝(𝑦|𝜃), but

with variability
▶ Can complicate things a bit, but usually not an issue

Further PMCMC resources
▶ For an awesome field-specific explanation

▶ Introduction to particle Markov-chain Monte Carlo for disease dynamics modellers
▶ For some considerations with modeling and inference

▶ Choices and trade-offs in inference with infectious disease models
▶ For an example of how it has been used in recent epidemiological literature

▶ Estimating SARS-CoV-2 transmission parameters between coinciding outbreaks in a
university population and the surrounding community

▶ For working with pmcmc in the pomp package
▶ Getting started with pomp

https://doi.org/10.1016/j.epidem.2019.100363
https://www.sciencedirect.com/science/article/pii/S1755436519300441
https://www.medrxiv.org/content/10.1101/2024.01.10.24301116v1
https://www.medrxiv.org/content/10.1101/2024.01.10.24301116v1
https://kingaa.github.io/pomp/vignettes/getting_started.html#Sampling_the_posterior_using_particle_Markov_chain_Monte_Carlo

Considerations for moving from mif2 to pmcmc in pomp

1. Specify the prior distributions for all parameters
2. Use the pmcmc() function
3. Use MCMC diagnostics to check convergence, etc.

Influenza boarding school example
▶ 1978 influenza epidemic in boarding school that infected much of the school
▶ Data are actually kids in beds, but we are assuming it’s new infections

Modeling as an SIR model with reporting of new infections

Modeling as an SIR model with reporting of new infections
rproc <- Csnippet("
double N = 2000;
double t1 = rbinom(S,1-exp(-Beta*I/N*dt));
double t2 = rbinom(I,1-exp(-mu_I*dt));
S -= t1;
I += t1 - t2;
NI += t1;
R += t2;

")

rmeas <- Csnippet("
B = rpois(rho*NI+1e-6);

")

Specifying the prior distribution
priorDens <- Csnippet("
lik = dunif(Beta, 1, 4, 1) +

dunif(mu_I, 0.5, 3, 1) +
dunif(rho, 0.5, 1, 1);

if (!give_log) lik = exp(lik);
")

▶ Add the densities (probabilities) for each parameter value independently
▶ Include the same log functionality used before
▶ We are specifying a plausible range of values for each parameter here

Running an MCMC chain
flu |> ## Standard pomp object that has already been created
pomp(dprior = priorDens, ## Prior specified from previous slide

params = sim_params, ## Parameter starting point
paramnames=c("Beta","mu_I","rho")) |> ## Parameter names

pmcmc(Nmcmc = 10000, ## Number of MCMC iterations
Np = 200, ## Number of particles to use
proposal = mvn_diag_rw(rw.sd = c(Beta=0.3, mu_I=0.3, rho=0.1))

) -> test_mcmc

Proposal distributions in pomp

▶ mvn_diag_rw(rw.sd) - you provide the standard deviations for
the proposals for each parameter

▶ mvn_rw(rw.var) - you provide the variance/covariance matrix
for proposals

▶ mvn_rw_adaptive() - you provide either of the above and it
attempts to automatically “tune” parameters to achieve good
MCMC mixing

Typically you need to test different values initially
flu |> ## Standard pomp object that has already been created
pomp(dprior = priorDens, ## Prior specified from previous slide

params = sim_params, ## Parameter starting point
paramnames=c("Beta","mu_I","rho")) |> ## Parameter names

pmcmc(Nmcmc = 10000, ## Number of MCMC iterations
Np = 200, ## Number of particles to use
proposal = mvn_diag_rw(rw.sd = c(Beta=0.3, mu_I=0.3, rho=0.1))

) -> test_mcmc

Diagnosing chain mixing

Diagnosing chain mixing - autocorrelation
library(coda)

test_mcmc |>
traces() |>
autocorr.diag(lags=c(10, 50, 100))

loglik log.prior Beta mu_I rho
Lag 10 0.8603731 NaN 0.8845398 0.8810328 0.8023407
Lag 50 0.5396487 NaN 0.5445343 0.5645781 0.3971658
Lag 100 0.3494610 NaN 0.3271410 0.3358897 0.2386606

mu_R1
Lag 10 0.9990001
Lag 50 0.9950005
Lag 100 0.9900010

Second step often uses the empirical covariance matrix for proposals to
improve mixing

flu |>
pomp(dprior = priorDens,

params = sim_params, ##Using the sim params as a starting spot
paramnames=c("Beta","mu_I","rho")) |>

pmcmc(Nmcmc = 10000,
Np = 200,
proposal = mvn_rw(covmat(test_mcmc, thin = 50))

) -> test_mcmc2

Improved trace plots!

Improved autocorrelation!
test_mcmc2 |>
traces() |>
autocorr.diag(lags=c(10, 50, 100))

loglik log.prior Beta mu_I
Lag 10 0.37014612 NaN 0.309750841 0.32244825
Lag 50 0.02823492 NaN -0.057939058 -0.03009082
Lag 100 0.01502889 NaN -0.005065156 -0.02058864

rho mu_R1
Lag 10 0.30978973 0.9990001
Lag 50 -0.01285783 0.9950005
Lag 100 -0.02784212 0.9900010

Estimating posterior distributions
1. Once you are happy with the mixing of your pmcmc you are ready to do a run

for estimating posteriors
2. First randomly choose 3-5 starting parameter values (example uses

Latin-hypercube sampling)
3. Run (in parallel or not depending on computational time) a chain intialized

with each
4. Diagnose chain mixing with trace plots and Gelman-Rubin convergence

diagnostic
5. Remove the burn-in period and thin based on diagnostics
6. Summarize parameter posterior distributions and credible intervals

Summary process for PMCMC in pomp
1. Create pomp object exactly as normal
2. Create the prior distributions for parameters
3. Run an initial pmcmc with mvn_diag_rw proposal to make sure it’s working

and diagnose
4. Randomly sample 3-5 parameter starting conditions
5. Run a PMCMC chain with mvn_rw() proposal and the variance/covariance

matrix from the first run for each of the initial parameter combinations
6. Diagnose mixing and convergence (alter components as needed)
7. Summarize parameters

Activity: how do stochastic and deterministic models differ?
1. Go to https://plewis.github.io/applets/mcmc-robot/, and play

with different MCMC parameters and variations
2. Download the exercise code for the influenza boarding school

example and test the impact of the following on mixing and
traceplots:

▶ Different parameters for the proposal distribution
▶ Different starting parameter values
▶ Different number of particles

License, acknowledgments, and links
▶ This lesson is prepared for the Simulation-based Inference for Epidemiological

Dynamics module at the Summer Institute in Statistics and Modeling in Infectious
Diseases, SISMID.

▶ The materials build on previous versions of this course and related courses.
▶ Licensed under the Creative Commons Attribution-NonCommercial license. Please

share and remix non-commercially, mentioning its origin.
▶ Produced with R version 4.4.0 and pomp version 5.9.
▶ Compiled on 2024-07-24.

Back to Lesson

R code for this lesson

https://rubbislam.quarto.pub/episim/
https://rubbislam.quarto.pub/episim/
https://sph.emory.edu/SISMID/index.html
../acknowledge.html
https://creativecommons.org/licenses/by-nc/4.0/
index.html
./main.R

